

GCE

Chemistry B

Unit H433A/02: Scientific literacy in chemistry

Advanced GCE

Mark Scheme for June 2017

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2017

H433/02

Annotations available in RM Assessor

Annotation	Meaning
\checkmark	Correct response
×	Incorrect response
	Omission mark
BOD	Benefit of doubt given
CON	Contradiction
RE	Rounding error
SF	Error in number of significant figures
ECF	Error carried forward
L1	Level 1
L2	Level 2
L3	Level 3
NBOD	Benefit of doubt not given
SEEN	Noted but no credit given
I	Ignore

12. Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
1	alternative and acceptable answers for the same marking point
✓	Separates marking points
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
_	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Annotation	Meaning
~	Correct response
×	Incorrect response
<u> </u>	Omission mark
BOD	Benefit of doubt given
CON	Contradiction
RE	Rounding error
SF	Error in number of significant figures
ECF	Error carried forward
<u>[1]</u>	Level 1
LZ	Level 2
13	Level 3
NBOD	Benefit of doubt not given
SEEN	Noted but no credit given
I	Ignore

Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.

You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet **Instructions for Examiners**. If you are examining for the first time, please read carefully **Appendix 5 Introduction to Script Marking: Notes for New Examiners**.

H433/02		Mark Scheme						
Question		Answer	Marks	Guidance				
(a)	(i)) $2CH_3COOH + Na_2CO_3 \rightarrow 2CH_3COONa + CO_2 + H_2O$ formulae \checkmark balancing of correct formulae \checkmark 2		 ALLOW any unambiguous formulae (including molecular formulae) ALLOW H₂CO₃ as a product in a balanced equation for 1 mark IGNORE state symbols 				
	(ii)	FIRST CHECK ANSWER LINE If answer = 11.25 or 11.3 (cm ³) award 2 marks amount CH ₃ COOH = 25 x 0.450/1000 OR 0.01125(mol) ✓ volume Na ₂ CO ₃ (= 0.5 x 0.01125 x 1000/0.500) = 11.25 (cm ³) ✓	2	ALLOW ecf from 1:1 ratio in a(i) ALLOW 3 or more sf				
(b)		$CH_3COO^- + H_2O \Rightarrow CH_3COOH + OH^-$	1	IGNORE state symbols ALLOW arrow for equilibrium sign				
(c)	(i)	$CH_3COOH \Rightarrow CH_3COO^- + H^+$	1	ALLOW: $CH_3COOH + H_2O \Rightarrow CH_3COO^- + H_3O^+$ Equilibrium sign required IGNORE state symbols				
	(ii)	FIRST CHECK ANSWER LINE If answer = 3.1(462) award 2 marks $[H^+] = \sqrt{(1.7 \times 10^{-5} \times 0.030)} \text{ OR } 7.14() \times 10^{-4} \checkmark$ pH (= -log 7.14 x 10 ⁻⁴) = 3.1(462) \checkmark	2	ALLOW 'H ⁺ ' for '[H ⁺]' ALLOW ecf for second mark provided value for [H ⁺] is quoted and it is smaller than 3 x 10 ⁻² and greater than 1.1 x 10 ⁻⁷ .				
(d)		acid/ H ⁺ moves equilibrium to left / reactants \checkmark idea of restoring/maintaining <u>pH</u> \checkmark large concentrations/ amounts/excess of salt/CH ₃ COO ⁻ \checkmark	3	Equilibrium must be written out (either for ethanoic acid or HA) to score first mark (or they could refer back to (c)(i)) ALLOW idea of "ethanoate ions react with H ⁺ ions to restore equilibrium" to score first mark				
(e)	(i)	$([H^+] = K_a \times [CH_3COOH]/[CH_3COO^-])$ gives pH = 4.77/4.8 \checkmark	1					

H433/02	Mark So	June 2017		
Question	Answer	Marks	Guidance	
(ii)	FIRST CHECK ANSWER LINE If answer = 0.35(g) award 4 marks $[CH_3COO^-] = K_a \times [CH_3COOH]/ [H^+] \checkmark$ = 1.7 x 10 ⁻⁵ x 0.1/10 ⁻⁵ OR 0.17 (mol dm ⁻³) \checkmark mass CH ₃ COONa per dm ³ = 82 x 0.17 OR 13.94 g \checkmark mass per 25 cm ³ = 13.94/40 = 0.35 g \checkmark OR moles in 25cm ³ = 0.17/40 = 4.25 x 10 ⁻³ \checkmark mass per 25 cm ³ = 4.25 x 10 ⁻³ x 82 = 0.35g \checkmark	4	Accept 0.349g / 0.3485g ALLOW 2 or more sf ALLOW ecf throughout ALLOW correct expression for K _a	
	Total	16		

(Quest	tion	Answer	Marks	Guidance
2	(a)		Phenol/hydroxy(I) \checkmark secondary amide \checkmark	2	NOT alcohol
	(b)	(i)	FIRST CHECK ANSWER LINE If answer = $13.5 / 14(g)$ award 2 marks amount 4-nitrophenol = $5.0/139$ OR 0.03597 (mol) AND mass phenol to give $100\% = 5.0 \times 94/139$ OR $3.381 (g) \checkmark$ scaling by $100/25$ to get $13.5 / 14 (g) \checkmark$	2	ALLOW ecf Any number scaled by 100/25 and to 2 or 3 sf scores second mark (if first mark not scored)
		(ii)		2	 ALLOW on NO₂ group: double bond to either oxygen with a single or dative bond to the other 'one and a half' bonds to each oxygen One mark for correct bonding within NO₂ group One mark for hydrogen bond between correct H and O (even if bonding wrong)
		(iii)	reduction AND amine	1	
		(iv)	$HO \longrightarrow HP_{2} + \bigvee_{O} \longrightarrow HO \longrightarrow HO \longrightarrow HO + \bigvee_{O} HO + \bigvee_{O}$	2	IGNORE non-skeletal formulae /ambiguous attachments Allow correct use of Ethanoyl chloride for 1 mark
		(v)	dissolve in minimum volume of <u>hot</u> water / solvent ✓ filter (hot solution) removing insoluble impurities ✓ allow to crystallise /AW✓ filter, soluble impurities removed/remain in solution ✓	4	ALLOW wash (and dry) crystals - soluble impurities are washed away √

H433	8/02	Mark Sc	June 2017		
Que	estion	Answer		Guidance	
	(c)(i)	 (AM404) has a similar shape to andanamide AW ✓ (AM404) fits/ binds/bonds to active site ✓ (AM404 in active site) not broken down/ stays on (active site)/ blocks site to/ competes with andanamide AW√ 	3		
	(ii)	(all) cis/Z ✓	1		
	(iii)	lack of rotation/twisting ✓	1		
		Total	18		

0

Quest	ion	Answer	Marks	Guidance
3 _{ОН}) ФН	(i) O⊢		Ф 1 ОН	All 5 Carbon atoms must be circled OH
	(ii)	aldehyde ✓	1	NOT carbonyl here
	(iii)	one from test 1 mark ✓ result linked to appropriate test 1 mark ✓ heat with Fehling's/ (brick) red ppt Benedicts solution silver mirror /AW add Tollens' reagent and warm silver mirror /AW heat with acid dichromate goes green	2	Reagents may be specified (eg 'silver nitrate and ammonia' for Tollens')
	(iv)	$H \xrightarrow{OH} H \xrightarrow{HO} H \xrightarrow{OH} OH$ $H \xrightarrow{OH} OH$	2	Both OH groups must be circled

H433/02		Mark Scheme					
Question		Answer	Marks	Guidance			
	(v)	Water / a small molecule is not produced/ both have same molecular formula	1				
	(vi)	–CHO + HO− → –CH(OH)–O–	1	ALLOW any unambiguous representation			
(b)		OH OH O O O O O O O O O O O O O	2				
(c)	(i)	Base(s) \checkmark Condense/react with(remaining) OH on deoxyribose \checkmark	2				
	(ii)	GAC	1				
	(iii)	leucine √	1				
	(iv)	mRNA sequence /(triplet) codon \checkmark codes for/fits with tRNA (anti-codon) on amino acid \checkmark	2				

H433/02	Mark Scheme							
H433/02	Mark Sc Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) Structure correct and at least one piece of evidence related to the structure is provided from each spectrum. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Structure correct but does not use evidence from each spectrum OR structure or given or incorrect but at least four correct pieces of evidence given from a minimum of two spectra There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) Structure correct with no evidence OR Structure not given or incorrect but at least two correct pieces of evidence given There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. O marks No response or no response worthy of credit.	6	indicative scientific points include: structure $CH_3OOCCH(OCH_3)_2$ Allow $(CH_3O)_2CHOCOCH_3$ infrared spectrum • C=O for ester (at 1750cm ⁻¹) • C-O for ester/ether (at 1000 - 1300cm ⁻¹) • no O-H/COOH (at 2500 - 3000cm ⁻¹) ignore idea of CH stretch/OH stretch at approx. 3000cm ⁻¹ ¹ H NMR • 3 proton environments • no splitting • 2 CH ₃ groups in the same environment • all O-CH (AW) ¹³ C NMR • four C environments • C=O at δ = 160ppm • CO at δ = 50ppm • no CC present If incorrect bond or environment identified conside whether or not the line of reasoning has been impeded and if so, then award lower mark within a level					
	Total	22						

H4	433/0	2				Ма	ark S	cheme		June 201
Question		ion	Answer					Marks	Guidance	
4	(a)	(i)	Equation no.	Oxidation state of Cr in reactant	Oxidation state of Cr in product	Has Cr been oxidised, reduced or neither?		4	Mark each row separately Penalise (+) omitted /3+ etc once only	
			4.1	+3	+6	oxidised	\checkmark			
			4.2	+6	+6	neither	\checkmark			
			4.3	+6	+3	reduced	\checkmark			
			4.4	+3	0	reduced	\checkmark			
		(ii)	If answer =	CK ANSWER 0.46 or round omite = 1000/ 2 x 4.468 x 52	ding to 0.465 223.8 OR 4.4	· · ·	arks	2	ALLOW 2 or more sf ALLOW 0.232kg for 1 mark	
	(b)	(i)	1s²2s²2p ⁶ 3s	² 3p ⁶ 3d ³				1	ALLOW any sized letters but numbers must be superscripts Accept [Ar] 3d ³ ALLOW 4s ⁰	
		(ii)	battery/pow solution lab	de/anode labe	nected ✓ m(III) chloride illed 'graphite	e / CrCl₃/ Cr ³⁺ ✓ ' AND		3	If two beaker diagram drawn, allow 1 mark for a steel electrode inserted into a chromium(III)chloride solution	3
		(iii)		de/cathode lat \rightarrow Cr \checkmark	Delled 'steel (object)′. ✓		1	Ignore battery convention UNLESS polarity of electrodes not otherwise indicated IGNORE state symbols ALLOW ecf from labelled cathode half cell if	_

H433/02	Mark Sc		June 2017	
(iv)	FIRST CHECK ANSWER LINE If answer = 8 (hours) award 3 marks moles of electrons = $3 \times 26/52$ OR $1.5 \checkmark$ time = $1.5 \times 96500/5$ OR 28950 (sec) \checkmark time in hours = $28950/3600 = 8(.04)$ (hours) \checkmark	3	ALLOW ecf ALLOW any sf If final answer rounds to 2.7 hours scores 2	
(C) (i)	chloride (ions) AND water (molecules)	1	IGNORE formulae NOT chlor <u>ine</u> ALLOW chloro and aqua	
(ii)	Add a named ionic chloride (solution) or hydrochloric acid/HCl ✓ to move equilibrium to the left/reactants ✓	2	Mark independently	
(d) (i)	FIRST CHECK ANSWER LINE If answer = 0.977 (g/100cm ³) on second answer line award 6 marks If answer = 0.21 (mol dm ⁻³) on first answer line award 5 marks amount $Cr_2O_7^{2-}$ init. = 20 x 0.2/1000 OR 4 x 10 ⁻³ (mol) \checkmark amount $Na_2S_2O_3 = 27.6 \times 0.1/1000$ OR 2.76 x 10 ⁻³ (mol) \checkmark amount $Cr_2O_7^{2-}$ left = 2.76 x 10 ⁻³ /6 OR 4.6 x 10 ⁻⁴ (mol) \checkmark amount $Cr_2O_7^{2-}$ used = 3.54 x 10 ⁻³ (mol) \checkmark amount $Cr_2O_7^{2-}$ used = 3.54 x 10 ⁻³ (mol) \checkmark end = (1.5 x 3.54 x 10 ⁻³ x 40) = 0.212(4) (mol dm ⁻³) \checkmark % (= 0.0212 x 46) = 0.975/0.977 (g/100cm ³) \checkmark	6	ALLOW two or more sf ALLOW ecf throughout.	
(d) (ii)	no other oxidising agents/ reducing agents in the beer	1	<u> </u>	
	Total	24		

Question		Answer	Marks	Guidance	
Quest 5 (a) (b)	1)	Answer	Marks 3 6	Guidance ALLOW just OH circled or C as well (as shown) Both circles must be shown for the ketones. If only carbon atoms have been identified, mark incorrect once and apply ecf Indicative scientific points include Why radiation absorbed • electrons move to higher energy levels/shells • absorbing light/radiation • frequency absorbed ΔE = hv (allow E = hv if clear reference to energy gap) Affect of structure on frequency of radiation • amount of delocalisation affects ΔE/ frequency • smaller delocalisation, larger ΔE/frequency • lignin has smaller chromophore/ less delocalisation than decomposition prods Source of yellow colour • uv higher frequency/ larger ΔE than visible • look yellow because they absorb the complementary colour/ blue/violet For answers that talk about electrons falling and releasing radiation/ light/colour impedes the line of reasoning and should result in the lower mark within a level being awarded.	
		understanding of one area There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1 – 2 Marks) Shows some understanding of one area. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. Level 0 (0 marks) No response or response has no merit.			

H433/02

Mark Scheme

June 2017

Question		Answer		Guidance	
	(ii)	FIRST CHECK ANSWER LINE If answer = $342 (kJ mol-1)$ award 3 marks Rearrangement of E = hv and c = $v\lambda$ to E = $hc/\lambda \checkmark$ E = $6.63 \times 10^{-34} \times 3 \times 10^8 / 3.5 \times 10^{-7}$ (J per atom) OR E = $6.63 \times 10^{-34} \times 8.57 \times 10^{14} \checkmark$ multiply by N_A and divide by 1000 and evaluate $(6.63 \times 10^{-34} \times 3 \times 10^8 \times 6.02 \times 10^{23} / 3.5 \times 10^{-7} \times 1000)$	3	ALLOW ecf MP2 subsumes MP1 and scores 2 marks	
(c)) (i) (ii)	= 342 kJ mol ⁻¹ \checkmark [Al(H ₂ O) ₆] ³⁺ / H ₂ O <u>ligand</u> / <u>in complex</u> \checkmark	1	Allow water/aqua for H ₂ O.	
		$H_{2}O$ H		Allow diagrams that are unambiguous in showing adjacent equatorial ligands with two coming out of the plane, and two going into the plane of the paper Do Not allow bonds to H atoms, must be to O as bonding is to the lone pair of electrons Mark independently	
		octahedral ✓			

H433/02

(d)	$2Fe^{2+} + O_2 + 2H^+ \rightarrow 2Fe^{3+} + H_2O_2 \checkmark$ Idea that Fe ²⁺ is not recycled \checkmark	2	
(e)	Use of diethyl zinc/ $(C_2H_5)_2Zn \checkmark$	3	
	Adding nanoparticles/ microparticles of MgO/Mg(OH)₂/Ca(OH)₂/metal hydroxides √		
	$(C_{2}H_{5})_{2}Zn + 2H^{+} \rightarrow Zn^{2+} + 2C_{2}H_{6}$ OR Ca(OH) ₂ + 2H ⁺ \rightarrow Ca ²⁺ + H ₂ O OR Mg(OH) ₂ + 2H ⁺ \rightarrow Mg ²⁺ + H ₂ O \checkmark		
	Total	20	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.gualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553 PART OF THE CAMBRIDGE ASSESSMENT GROUP

