

# GCE

## **Chemistry B**

H433/02: Scientific literacy in chemistry

Advanced GCE

## Mark Scheme for June 2019

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2019

#### Annotations available in RM Assessor

| Annotation | Meaning                                |
|------------|----------------------------------------|
| <b>√</b>   | Correct response                       |
| ×          | Incorrect response                     |
|            | Omission mark                          |
| BOD        | Benefit of doubt given                 |
| CON        | Contradiction                          |
| RE         | Rounding error                         |
| SF         | Error in number of significant figures |
| ECF        | Error carried forward                  |
| L1         | Level 1                                |
| L2         | Level 2                                |
| L3         | Level 3                                |
| NBOD       | Benefit of doubt not given             |
| SEEN       | Noted but no credit given              |
| I          | Ignore                                 |
|            |                                        |

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

| Annotation   | Meaning                                                    |
|--------------|------------------------------------------------------------|
| DO NOT ALLOW | Answers which are not worthy of credit                     |
| IGNORE       | Statements which are irrelevant                            |
| ALLOW        | Answers that can be accepted                               |
| ()           | Words which are not essential to gain credit               |
|              | Underlined words must be present in answer to score a mark |
| ECF          | Error carried forward                                      |
| AW           | Alternative wording                                        |
| ORA          | Or reverse argument                                        |

#### Subject-specific Marking Instructions

#### INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.

You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet **Instructions for Examiners**. If you are examining for the first time, please read carefully **Appendix 5 Introduction to Script Marking: Notes for New Examiners**.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

| Q | uestio | n    | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Marks | AO                 | Guidance                                                                                   |
|---|--------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------|--------------------------------------------------------------------------------------------|
| 1 | (a)    |      | A: (di)acyl chloride ✓<br>B: (di)amine ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2     | element<br>1.1 x 2 | IGNORE arene/benzene/aromatic ring/secondary/<br>DO NOT ALLOW phenyl/amide/acyl on its own |
| 1 | (b)    |      | Angle 120° ✓<br>three groups/sets of electrons/ 3 areas of electron density<br>(around C)✓<br>repel and get as far away as possible/minimise repulsion✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3     | 2.1<br>2.1<br>1.1  | ALLOW 117 - 122<br>Mark separately (i.e. no ecf)<br>IGNORE three (bonding) pairs           |
| 1 | (c)    |      | FIRST CHECK THE ANSWER ON ANSWER LINE<br>If answer = 26 (g) award 2 marks<br>Amount benzene-1,4-dicarboxylic acid = $32/166 = 0.19 \text{ mol }\checkmark$<br>Mass compound <b>A</b> = 0.19 x 0.67 x 203 = 26 (g) (nearest<br>whole number) $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2     | 2.4 x 2            | ALLOW ecf from incorrect number of moles                                                   |
| 1 | (d)    |      | step 1: (conc) ammonia/NH <sub>3</sub> $\checkmark$<br>step 2: Sn + <u>conc</u> HC <i>l</i> /names $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2     | 2.3<br>2.3         | IGNORE heat/reflux/ethanolic but any other additional reagents is CON                      |
| 1 | (e)    | (i)  | hydrogen (bonds) ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1     | 1.1                |                                                                                            |
| 1 | (e)    | (ii) | $- \underbrace{)}_{H_{N}} \underbrace$ | 1     | 1.1                | <b>BOTH</b> dotted lines required but not lone pairs or partial charges                    |
| 1 | (f)    | (i)  | Heat/ reflux with HC1/ H <sub>2</sub> SO <sub>4</sub> / NaOH / acid / alkali / names $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1     | 1.2                | <b>DO NOT ALLOW</b> conc. H <sub>2</sub> SO <sub>4</sub>                                   |
| 1 | (f)    | (ii) | Answer depends on catalysts chosen in (f)(i): alkaline hydrolysis:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2     | 1.2 x 2            | ALLOW salts rather than cation/ anion<br>ALLOW any unambiguous representation              |

| H433/02 |
|---------|
|---------|

| Question | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  | AO      | Guidance                                                                                                                  |  |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|---------|---------------------------------------------------------------------------------------------------------------------------|--|
|          | acid hydrolysis:<br>$h^{\circ} \rightarrow h^{\circ} \rightarrow h^$ |  | element | ALLOW one mark for unionised diamine and<br>dicarboxylic acid<br>IGNORE ambiguous attachments eg OH attached<br>through H |  |

| Q | uestio | n    | Answer                                                                                                                                                                                                                                                                                                                                   | Marks | AO                 | Guidance                                                                                                                                                                                                |
|---|--------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | (a)    |      | electrons raised/excited to higher energy levels (by heat) ✓                                                                                                                                                                                                                                                                             | 3     | element<br>1.2 x 3 | <b>DO NOT ALLOW</b> answers where energy source is                                                                                                                                                      |
|   | (α)    |      | fall and release energy/visible light/photon $\checkmark$<br>frequency of energy/light/photon proportional to gap between<br>energy levels / ( $\Delta$ )E = hv $\checkmark$                                                                                                                                                             |       | 1.2 × 0            | e/m radiation                                                                                                                                                                                           |
| 2 | (b)    | (i)  | FIRST CHECK THE ANSWER ON ANSWER LINE<br>If answer = 1260 (cm <sup>3</sup> ) award 4 marks<br>amount SrCO <sub>3</sub> (= 12.0/147.6) = 0.0813 (mol) $\checkmark$<br>V = nRT/P $\checkmark$<br>V = 0.0813 x 8.314 x 290 x 10 <sup>6</sup> /155000 = 1260 (cm <sup>3</sup> ) (3 or<br>more sf) $\checkmark$<br>Answer to 3sf $\checkmark$ | 4     | 2.8 x 4            | ALLOW ECF<br>ALLOW answers rounding to 1260 for 3 marks<br>If values inserted into equation that clearly<br>demonstrates use of MP2 this scores MP2<br>ALLOW sf mark for any calculated volume to 3 sf. |
| 2 | (b)    | (ii) | strontium ions are larger (and attraction less) ✓<br>strontium (ions) have lower charge density ✓<br>they distort/polarise the carbonate (ions) less ✓<br>thermal stability of strontium (carbonate) is higher ✓                                                                                                                         | 4     | 3.2 x 4            | ALLOW ora throughout<br>DO NOT ALLOW atomic radius<br>ALLOW thermal stability increases down the<br>group.                                                                                              |
| 2 | (c)    | (i)  | 46 ✓                                                                                                                                                                                                                                                                                                                                     | 1     | 1.1                | group.                                                                                                                                                                                                  |
| 2 | (c)    | (ii) | FIRST CHECK THE ANSWER ON ANSWER LINE<br>If answer = 87.71 award 2 marks<br>$(84 \times 0.56) + (86 \times 9.86) + (87 \times 7.00) + (88 \times 82.58) \checkmark$<br>evaluated as percentage and expressed to 2 dp $\checkmark$                                                                                                        | 2     | 1.2 x 2            | If 2 marks not scored award max 1 mark for any calculated value between 86 and 88 to 2dp.                                                                                                               |
| 2 | (d)*   |      | Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question.<br>Level 3 (5 – 6 marks)<br>Chooses an appropriate acid concentration.                                                                                                                                                 | 6     | 3.4 x 3<br>3.3 x 3 | Indicative scientific points include:<br>Choice of acid concentration                                                                                                                                   |

| Q | uestio | n    | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Marks | AO         | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---|--------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |        |      | <ul> <li>AND Gives a detailed description, including some fine detail, of procedure. AND Describes how the result would be calculated. There is a well-developed line of reasoning which is clear and logically structured. Level 2 (3 – 4 marks) Gives most of the key steps in the procedure, may include some fine detail AND describes how the result would be calculated. OR Addresses all three areas but lacks depth in any of them. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1 – 2 marks) A basic description of procedure. OR An attempt to describe the choice of acid concentration. OR An attempt to describe how the result would be calculated.</li> <li>There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.</li> <li>0 marks</li> </ul> |       | element    | <ul> <li>Calculates conc of Sr(OH)<sub>2(aq)</sub> = 0.08 mol dm<sup>-3</sup>;</li> <li>use of reaction stoichiometry 2:1 to determine appropriate concentration of acid to be used (approx. 0.15 – 0.2 mol dm<sup>-3</sup>)</li> <li>Practical details <ul> <li>pipette 20/25 cm<sup>3</sup> Sr(OH)<sub>2</sub>/HC<i>l</i> in a suitable flask;</li> <li>add indicator; (details not required)</li> <li>place acid/alkali in burette;</li> <li>titrate until colour change (details not required)</li> <li>repeat until concordant titres obtained</li> </ul> </li> <li>Relevant fine detail</li> <li>Rinses pipette with solution to be delivered</li> <li>Performs a rough titration</li> <li>Add dropwise near to end point</li> </ul> <li>Final calculation <ul> <li>Calculates average volume used</li> <li>Use of equation or mole ratio</li> <li>Gives example of suitable relationship to calculate actual concentration eg use of c = n/v</li> </ul></li> |
| 2 | (e)    | (i)  | No response or no response worthy of credit.<br>$Sr(OH)_2(s) \Rightarrow Sr^{2+}(aq) + 2OH^{-}(aq) \checkmark$<br>$K_{sp} = [Sr^{2+}] [OH^{-}]^2 \checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2     | 2.2<br>1.1 | Equilibrium can be either way round.<br>Penalise incorrect charge on Sr ions once only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2 | (e)    | (ii) | FIRST CHECK THE ANSWER ON ANSWER LINE<br>If answer = 1.6 x 10 <sup>-4</sup> mol <sup>3</sup> dm <sup>-9</sup> award 3 marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3     | 2.6 x 3    | If final answer does not = 1.6 x 10 <sup>-4</sup> mol <sup>3</sup> dm <sup>-9</sup><br>ALLOW ECF from (i) provided only Sr and OH<br>ions are involved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| Question |            | Answer                                                                                                                                                                                                                                              | Marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|----------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| <u> </u> |            |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | element                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|          |            | [Sr <sup>2+</sup> ] = 3.4 x 10 <sup>-2</sup> <b>AND</b> [OH <sup>-</sup> ] = 6.8 x 10 <sup>-2</sup> ✓                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>ALLOW ECF</b> from incorrect concentrations of Sr or OH ions, including units as appropriate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|          |            | $K_{\rm sp} = 3.4 \times 10^{-2} \times (6.8 \times 10^{-2})^2 = 1.6 \times 10^{-4} \checkmark$<br>units mol <sup>3</sup> dm <sup>-9</sup> ✓                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ALLOW 2 or more sf<br>ALLOW units derived from an attempt at a worked<br>calculation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| (e)      | (iii)      | larger/increased concentration of OH⁻ ✓                                                                                                                                                                                                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.2 x 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ALLOW more hydroxide ions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
|          |            | concentration of $Sr^{2+}$ reduces in order for $K_{sp}$ to remain constant <b>AND</b> solubility is lower $\checkmark$                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>ALLOW</b> moves equilibrium to left <b>AND</b> solubility is lower<br>Any reference to $K_{sp}$ changing is CON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| (f)      | (i)        | s(-block) ✓                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| (f)      | (ii)       | Any two from:         Sr <sup>2+</sup> and Rb <sup>+</sup> / Sr loses 2 electrons and Rb loses 1 electron ✓         more (delocalised) electrons in Sr ✓         Sr <sup>2+</sup> attracts (more) electrons (in metallic structure) more strongly ✓ | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.1 x 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DO NOT ALLOW more outer shell electrons<br>DO NOT ALLOW references to Sr nuclei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|          | (e)<br>(f) | (e) (iii)<br>(f) (i)                                                                                                                                                                                                                                | Image: Signed stateImage: Signed stateImage: Signed state $[Sr^{2+}] = 3.4 \times 10^{-2} \text{ AND } [OH^-] = 6.8 \times 10^{-2} \checkmark$ Image: Signed state $K_{sp} = 3.4 \times 10^{-2} \times (6.8 \times 10^{-2})^2 = 1.6 \times 10^{-4} \checkmark$ Image: Signed state $K_{sp} = 3.4 \times 10^{-2} \times (6.8 \times 10^{-2})^2 = 1.6 \times 10^{-4} \checkmark$ Image: Signed stateImage: Signed st | Image: Note that the second | Image: Note that the image: Note that the image is the image. The image is the image. The image is the im |  |  |

| Q | Question |     | Answer                                                                                                                                                                                                         |   | AO<br>element | Guidance                                                   |  |
|---|----------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------|------------------------------------------------------------|--|
| 3 | (a)      |     | $3C_{l_2} + 6 \text{ OH}^- \rightarrow ClO_3^- + 5 \text{ C}l^- + 3H_2O$<br>Numbers in front of chlorine species $\checkmark$<br>Numbers in front of OH <sup>-</sup> and H <sub>2</sub> O correct $\checkmark$ | 2 | 2.5 x 2       | <b>ALLOW</b> '1' in front of $ClO_3^-$ / correct multiples |  |
| 3 | (b)      | (i) | $ClO_3^{-}/ClO_2$ is less positive/ more negative than $Cl_2/Cl^{-1}$                                                                                                                                          | 2 | 2.8 x 2       | IGNORE 'larger'/'smaller'                                  |  |

### H433/02

|   |     |       | so $ClO_2$ is oxidised AND $Cl_2$ is reduced / electrons flow from $ClO_3^-/ClO_2$ (ora) / half equations are reversed $\checkmark$                                                                                                                                                                                      |   |         | <b>ALLOW</b> by reference to one species in either half equation.                                                                                                                                                                                                                                                                                                              |
|---|-----|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 | (b) | (ii)  | Larger [H⁺] / [Cŀ] ✓                                                                                                                                                                                                                                                                                                     | 2 | 3.1 x 2 | IGNORE 'more'                                                                                                                                                                                                                                                                                                                                                                  |
|   |     |       | Equilibrium / equation 3.1 moves to right $\checkmark$                                                                                                                                                                                                                                                                   |   |         | <b>ALLOW</b> $E^{\circ}$ for $ClO_3^{-}/ClO_2$ more positive OR $E^{\circ} Cl_2/Cl$ becomes more negative                                                                                                                                                                                                                                                                      |
| 3 | (c) | (i)   | Pt(s)<br>/graphite salt bridge Cu(s)<br>Cl <sub>2</sub> (aq) + Ct <sup>-</sup> (aq)<br>voltmeter and salt bridge $\checkmark$<br>Cu <sup>2+</sup> (aq) and Cu(s) $\checkmark$<br>Cl <sub>2</sub> (aq)/ Ct <sup>-</sup> (aq) and Pt / C electrode $\checkmark$<br>solutions 1 mol dm <sup>-3</sup> and 298 K $\checkmark$ | 4 | 3.4 x 4 | IGNORE description of makeup of salt bridge<br>IGNORE '2' in front of 'CI-'<br>ALLOW Cu and Pt/C without state symbols.<br>ALLOW one mark for points 2 and 3 if all state<br>symbols omitted<br>ALLOW electrodes around the other way<br>If no solution shown in either half cell MP2 OR<br>MP3 cannot score<br>If no solution shown in both half cells only<br>penalise once. |
| 3 | (c) | (ii)  | 1.02 (V) ✓                                                                                                                                                                                                                                                                                                               | 1 | 2.8     | IGNORE sign                                                                                                                                                                                                                                                                                                                                                                    |
| 3 | (c) | (iii) | <u>in the wire</u> from Cu (ora) ✓                                                                                                                                                                                                                                                                                       | 1 | 2.8     | ALLOW movement of electrons correctly labelled on the diagram.                                                                                                                                                                                                                                                                                                                 |
| 3 | (c) | (iv)  | $2H^{+}(aq) + 2e^{-} \Leftrightarrow H_2(g)$                                                                                                                                                                                                                                                                             | 1 | 1.2     | ALLOW equation:<br>•halved<br>•with arrow<br>•other way round                                                                                                                                                                                                                                                                                                                  |

## H433/02

| Q | Question |       | Answer                                                                                                                                                                              |   | AO<br>element | Guidance                                                                                                                                                                                                                                                                                   |  |
|---|----------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 3 | (c)      | (v)   | FIRST CHECK THE ANSWER ON ANSWER LINE<br>If answer = +0.28 (V) award 2 marks<br>$ln 0.01 = -4.6 \checkmark$<br>E = +0.34 - (0.0128 x 4.6) = +0.28 (V) $\checkmark$                  | 2 | 2.8 x 2       | ALLOW 2 or more sf<br>+ sign essential. (0.28 with no sign = 1)<br>lg 0.01 answer is +0.31V for 1 mark only<br>ALLOW If MP1 not clearly stated then by<br>implication it can be credited from a subsequent<br>calculation eg;<br>E <sub>cell</sub> = 1.02 answer is +0.96V for 1 mark only |  |
| 3 | (d)      | (i)   | $Cl_2 + 2l^- \rightarrow 2 Cl^+ l_2$                                                                                                                                                | 1 | 1.2           | IGNORE state symbols                                                                                                                                                                                                                                                                       |  |
| 3 | (d)      | (ii)  | iodide(ion)                                                                                                                                                                         | 1 | 1.2           | IGNORE formulae                                                                                                                                                                                                                                                                            |  |
| 3 | (d)      | (iii) | brown/orange/yellow (solution)                                                                                                                                                      | 1 | 1.2           | <b>ALLOW</b> these colours or any combination but no others. <b>IGNORE</b> reference to starting colour. PPT or (s) is CON                                                                                                                                                                 |  |
| 3 | (d)      | (iv)  | Chlorine has a greater attraction for (AW) electrons (than iodine) (ora)                                                                                                            | 1 | 2.5           | Reference to molecules is CON<br>IGNORE references to electronegativity /<br>attraction to valence electrons                                                                                                                                                                               |  |
| 3 | (e)      |       | <ul> <li>Test tube or flask containing Sodium Chloride and concentrated sulphuric acid ✓</li> <li>Delivery tube for downward delivery into a test tube or boiling tube ✓</li> </ul> | 2 | 3.3 x 2       | ALLOW formulae<br>Collection over water, or into a sealed vessel<br>CONs MP2                                                                                                                                                                                                               |  |

| Q | Question |     | Answer                                                                                                                                                                                                                                      |   | AO<br>element | Guidance |
|---|----------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------|----------|
| 4 | (a)      |     | Oxides of nitrogen/NO <sub>2</sub> is recycled/regenerated/reformed $\checkmark$<br>reactions are NO <sub>2</sub> + O $\rightarrow$ NO + O <sub>2</sub> and NO + O <sub>3</sub> $\rightarrow$ NO <sub>2</sub> + O <sub>2</sub> $\checkmark$ | 2 | 3.1 x 2       |          |
| 4 | (b)      | (i) |                                                                                                                                                                                                                                             | 4 | 2.8 x 4       |          |

| Q | Question |      | Answer                                                                                                                                                                                                                         |   | AO<br>element | Guidance                                                                                                                                                     |
|---|----------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |          |      | 0.35<br>0.3<br>0.25<br>[N <sub>2</sub> O <sub>5</sub> ]/mol dm <sup>-3</sup> 0.2<br>0.15<br>0.1<br>0.05<br>0<br>0<br>1000 2000 3000 4000 5000<br>Time/s                                                                        | 0 |               |                                                                                                                                                              |
|   |          |      | axes round right way and labelled correctly $\checkmark$<br>scale to fill 2/3 of area $\checkmark$<br>plot with line of best fit $\checkmark$<br>measurement of one half-life = 1400 s ± 100 $\checkmark$                      |   |               | Should be a curve that touches at least 4 points.<br>Mark half-life by answer given, no construction lines needed for <i>this</i> part.                      |
| 4 | (b)      | (ii) | 'Half lives constant' <b>AND</b><br>At least two half-lives constructed ✓                                                                                                                                                      | 1 | 2.7           |                                                                                                                                                              |
|   | (c)      |      | (k = 9.8 x 10 <sup>-5</sup> / 0.210 =) 4.7 x 10 <sup>-4</sup> $\checkmark$<br>units s <sup>-1</sup> $\checkmark$                                                                                                               | 2 | 2.4 x 2       | ALLOW 2 or more sf<br>Mark units separately                                                                                                                  |
|   | (d)      |      | FIRST CHECK THE ANSWER ON ANSWER LINE<br>If answer = (+)100±10 (any sf) (kJ mol <sup>-1</sup> ) award 3 marks<br>slope = $-12000\pm500$ ✓<br>Ea = $12000 \times 8.314 = (+)99768$ (J) ✓<br>= (+)99.8 (kJ mol <sup>-1</sup> ) ✓ | 3 | 2.6 x 3       | ALLOW one or more sf<br>ALLOW ECF<br>MP1 is for calculating the gradient<br>MP2 is for multiplying by R and evaluating<br>MP3 is for converting from J to kJ |
|   | (e)      |      | (this is a possible mechanism because) reactions add to overall equation / $2N_2O_5 \rightarrow 4NO_2 + O_2 \checkmark$                                                                                                        | 3 | 3.1 x 3       |                                                                                                                                                              |

| Question | Answer                                                                                                                                                                                                                                                                                                      |  | AO<br>element | Guidance                                                                                                                                                                                                                                                                     |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | step 1 could be rate determining because it uses N <sub>2</sub> O <sub>5</sub> as a reactant / N <sub>2</sub> O <sub>5</sub> decomposes $\checkmark$<br>step 3 could be rate determining because it uses N <sub>2</sub> O <sub>5</sub> as a reactant / could be slow compared to steps 1 and 2 $\checkmark$ |  |               | ALLOW cannot be step 2 as $N_2O_5$ does<br>not appear in the equation for 1 mark if no<br>reference made to either step 1 or step 3.<br>ALLOW BOTH step 1 and step 3 could be<br>RDS with a reason scores 2 marks<br>BOTH step 1 and step 3 with no reason<br>scores 1 mark. |

| Question |     | on   | Answer                                                                                                                                                                                                                                                                                                      | Marks | AO                           | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------|-----|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5        | (a) |      | $C_{2}H_{2}(g) + 2.5O_{2}(g) \rightarrow 2CO_{2}(g) + H_{2}O(g/I)$ $\Delta_{f}H C_{2}H_{2} \qquad 2\Delta_{f}H CO_{2} \qquad \Delta_{f}H H_{2} \oslash \checkmark$ $2C(s) + 2.5O_{2}(g) + H_{2}(g) \checkmark$ $\Delta_{c}H = 2\Delta_{f}H CO_{2} + \Delta_{f}H H_{2}O - \Delta_{f}H C_{2}H_{2} \checkmark$ | 3     | element<br>2.1<br>2.1<br>2.1 | First mark for correct elements<br>Second mark for correct $\Delta_t H$ descriptions and top<br>equation<br>ALLOW $\Delta_t H$ 2CO <sub>2</sub><br>IGNORE $\Delta_t H$ O <sub>2</sub><br>Third mark for correct expression for $\Delta_c H$                                                                                                                                                                                           |
| 5        | (b) |      | FIRST CHECK THE ANSWER ON ANSWER LINE<br>If answer = 1.9 (times greater) award 4 marks                                                                                                                                                                                                                      | 4     |                              | Allow use of definitions/symbols from enthalpy<br>cycle<br><b>ALLOW</b> 3 marks if mole fraction route not used ie;<br>Correct equation for propane $\checkmark$<br>Scaled equation for acetylene so that moles of O <sub>2</sub><br>are identical in both equations / acetylene needs<br>2.5 moles O <sub>2</sub> and propane needs 5 moles O <sub>2</sub> $\checkmark$<br>Ratio of acetylene to propane = 2 identified $\checkmark$ |
|          |     |      | Equation: $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O\checkmark$<br>5/0.2 = 25 (moles 'air') $\checkmark$<br>12.5 moles 'air' for acetylene $\checkmark$<br>26/13.5 = 1.9 (times greater) $\checkmark$                                                                                                         |       | 2.5<br>2.5<br>2.6<br>2.6     | ALLOW ECF from an incorrect equation                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5        | (c) | (i)  | Carbon atoms contain 4 outer (shell) electrons $\checkmark$ sp <sup>2</sup> (orbitals) uses 3 electrons $\checkmark$                                                                                                                                                                                        | 2     | 2.1 x 2                      |                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          |     | (ii) | ethene: form a $\pi$ bond $\checkmark$<br>naphthalene: delocalised/conjugated $\checkmark$                                                                                                                                                                                                                  | 2     | 1.1 x 2                      |                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5        | (d) |      | Abstraction/removal of hydrogen from naphthalene $\checkmark$                                                                                                                                                                                                                                               | 1     | 2.5                          | <b>DO NOT ALLOW</b> steps before abstraction<br><b>IGNORE</b> any further steps that grow PAH                                                                                                                                                                                                                                                                                                                                         |
| 5        | (e) | (i)  | initiation <b>AND</b> radicals formed (from molecules) ✓                                                                                                                                                                                                                                                    | 1     | 2.1                          |                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|          |     | (ii) | Provide energy/break bonds by colliding $\checkmark$                                                                                                                                                                                                                                                        | 1     | 3.2                          | IGNORE reference to catalyst                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5        | (f) |      | Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question.                                                                                                                                                                                           | 6     | 3.1 x 6                      | Indicative scientific points include:<br>Flame temp:                                                                                                                                                                                                                                                                                                                                                                                  |

### H433/02

| Question | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Marks | AO<br>element | Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | <ul> <li>Level 3 (5 – 6 marks)</li> <li>Gives a detailed account of controlling flame temperature, small molecule reactions and competing reactions, exemplified by the use of at least one appropriate equation.</li> <li><i>There is a well-developed line of reasoning which is clear and logically structured.</i></li> <li>Level 2 (3 – 4 marks)</li> <li>Gives an outline account of controlling flame temperature, small molecule reactions and competing reactions.</li> <li>OR</li> <li>Gives a detailed account of two of the following areas, controlling flame temperature, small molecule reactions</li> <li>There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence.</li> </ul> |       |               | <ul> <li>saturated hydrocarbons need more oxygen per mole</li> <li>fewer saturated hydrocarbon molecules in the same volume;</li> <li>hence lower flame temp;</li> <li>pure oxygen produces higher flame temperatures;</li> <li>example comparison equations (Allow ORA for arguments in favour of unsaturated hydrocarbons)</li> </ul> Small molecule reactions: <ul> <li>oxygen atoms/ molecules produce hydrogen atoms</li> <li>use of appropriate equation(s), eg CH + O → CO + H or CH<sub>2</sub> + O<sub>2</sub> → CO<sub>2</sub> + 2H</li> <li>more hydrogen atoms abstracted from growing PAH</li> <li>balance entropy AW</li> </ul> |
|          | Level 1 (1 – 2 marks)<br>Gives an outline account of two of the following areas,<br>controlling flame temperature, small molecule reactions or<br>competing reactions<br>OR<br>Gives a detailed account of one area<br>There is an attempt at a logical structure with a line of<br>reasoning. The information is in the most part relevant.                                                                                                                                                                                                                                                                                                                                                                                                                           |       |               | <ul> <li>Competing reactions:</li> <li>production of acetylene vs CO<sub>2</sub>;</li> <li>saturated hydrocarbons produce more CO<sub>2</sub>;</li> <li>unsaturated hydrocarbons produce acetylene;</li> <li>acetylene leads to soot formation</li> <li>soot formation vs CO<sub>2</sub> production</li> </ul>                                                                                                                                                                                                                                                                                                                                |
|          | <b>0 marks</b><br>No response or no response worthy of credit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

OCR (Oxford Cambridge and RSA Examinations) The Triangle Building Shaftesbury Road Cambridge CB2 8EA

**OCR Customer Contact Centre** 

#### **Education and Learning**

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.gualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553





© OCR 2019