

GCE

Chemistry B

H033/02: Chemistry in depth

Advanced Subsidiary GCE

2021 Mark Scheme (DRAFT)

This is a DRAFT mark scheme. It has not been used for marking as this paper did not receive any entries in the series it was scheduled for. It is therefore possible that not all valid approaches to a question may be captured in this version. You should give credit to such responses when marking learner's work.

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2021

1. Annotations

Annotation	Meaning
✓	Correct response
×	Incorrect response
^	Omission mark
BOD	Benefit of doubt given
CON	Contradiction
RE	Rounding error
SF	Error in number of significant figures
ECF	Error carried forward
L1	Level 1
L2	Level 2
L3	Level 3
NBOD	Benefit of doubt not given
SEEN	Noted but no credit given
I	Ignore

2. Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
1	alternative and acceptable answers for the same marking point
✓	Separates marking points
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
_	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

3. Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.

You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet **Instructions for Examiners**. If you are examining for the first time, please read carefully **Appendix 5 Introduction to Script Marking: Notes for New Examiners**.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

G	Question		Answer	Marks	AO element	Guidance
1	(a)	(i)	H—C— H ✓ bond angle = 109.5 ° ✓	2	1.1(x2)	For MP1 there must be <u>a solid wedge</u> and <u>a</u> dashed line/dashed wedge in either position. IGNORE any connection of C- to rest of molecule. ALLOW 109 - 110
		(ii)	C C / C / \	1	1.1	ALLOW variations on the pi-bond, for example: However, there must be one above and one below the sigma-bond as drawn Discuss what is acceptable at SSU.
	(b)	(i)	H ₃ C H ₃ C	1	2.5	ALLOW any unambiguous formula
		(ii)		1	2.7	

(c)		CH₃CH+CH₂C <i>l</i> ✓	1	2.5	
(d)	(i)	(In but-2-ene) both groups on each C-atom (of the double bond) are different / (in propene) one of the C-atoms (of the double bond) has two atoms / groups that are the same / has two H-atoms ✓	1	2.1	
	(ii)		2	2.1(x2)	
		Total	9		

C	uest	ion	Answer	Marks	AO element	Guidance
2	(a)	(i)	$NaCl + H_2SO_4 \rightarrow HCl + NaHSO_4$	1	1.2	ALLOW equations forming Na ₂ SO ₄ $2NaCl + H_2SO_4 \rightarrow 2HCl + Na_2SO_4$ IGNORE state symbols
		(ii)	phosphoric acid	1	1.1	
		(iii)	If black are marked as positive, white must be marked as negative and vice-versa ✓	1	1.1	
	(b)	(i)	X is hydrogen bromide ✓ red/brown vapour is bromine ✓	2	3.1 3.2	
		(ii)	Add silver nitrate solution ✓ Off white/cream ppt (of silver bromide) ✓	2	3.3 3.4	
	(c)		Any two from 1.Less than 240 cm³ of water should be used ✓ (otherwise) rinsing cannot occur ✓ 2 The glass rod should be rinsed (before removal) ✓ (otherwise) some (named) solute/solid is removed ✓ 67 The (volumetric) flask should be inverted (several times) ✓ (in order to) thoroughly/properly mix the solution ✓	4	3.4 (x4)	the numbers 1, 2 and 6 are the numbers in the procedure in the QP and may/may not be included in an answer

2	(d)	(i)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 0.0471 (mol dm ⁻³) award 3 marks	3		ALLOW ecf
			amount HCl = $23.55/1000 \times 0.1$ (= 2.355×10^{-3}) \checkmark conc Na ₂ CO ₃ = $0.5 \times 2.355 \times 10^{-3} \times 1000/25 \checkmark$ = 0.0471 (mol dm ⁻³) to 3 sf \checkmark		3.1 2.8 3.1	MP3 is scored by any calculated number to 3 sf
		(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 7 award 4 marks	4	2.8 (x4)	ALLOW ecf
			mass of hydrate in 1 dm ³ = 1.46 x 4 = 5.84 g \checkmark mass of Na ₂ CO ₃ in 1 dm ³ = 2.51 x 10 ⁻² x106 = 2.66 g \checkmark Mass of water = 5.84 - 2.66 = 3.18 g Amount of water = 3.18/18 = 0.177 mol \checkmark Ratio = 0.177/0.0251 = 7 \checkmark			ONLY award MP4 if it is given as a whole number
	(e)	(i)	$2I^- \rightarrow I_2 + 2e^- \checkmark$	1	1.2	ALLOW $ \cdot \rightarrow \frac{1}{2} _{2} + e^{-}$ $ \cdot \rightarrow \frac{1}{2} _{2} + e^{-}$ $ \cdot - e \rightarrow \frac{1}{2} _{2}$ electron symbol with or without minus $ \textbf{GNORE} \text{ state symbols}$
		(ii)	Bromine attracts electrons more (strongly) (AW) than iodine ✓	1	1.1	ALLOW Br has fewer electrons/less shielding than I so attracts an extra electron more (strongly)
		(iii)	(dissolved) iodine ✓	1	1.2	
			Total	21		

(Question		Answer	Marks	AO element	Guidance
3	(a)		homolytic (fission) / homolysis ✓	1	1.2	
	(b)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 1.16 x 10 ¹⁵ (Hz) award 3 marks	3	2.6 (x3)	The working for an incorrect answer MUST be checked in detail.
			Energy needed to break one O-H bond = $(\Delta H(O-H)/N_A)$ = $463 / 6.02 \times 10^{23}$ = 7.69×10^{-22} (J) \checkmark Conversion of kJ to J = 7.69×10^{-19} (J) \checkmark υ = E/h $7.69 \times 10^{-19} / 6.63 \times 10^{-34}$ = 1.16×10^{15} (Hz) \checkmark			Candidates may multiply/divide the numbers in a different order (or even combine steps) to that shown in the answer column so the order of/the numbers in this method of working may not necessarily be seen. However, candidates should show evidence (explicit or implicit) of using $E = h\upsilon$ (\checkmark), and dividing by both the Planck constant and the Avogadro constant (\checkmark) and converting between J and kJ (\checkmark).
	(c)	(i)	Cl + ClO AND ClO + Cl ✓	1	1.2	
		(ii)	trichlorofluoromethane <	1	1.2	IGNORE use of hyphens

(d)*	Please refer to the marking instructions on page 5 of this	6	2.1 (x3)	Indicative scientific points include:
` '	mark scheme for guidance on how to mark this question.	-	3.2 (x3)	(fine detail in italic)
				CH₃OH
	Level 3 (5–6 marks)			attraction is a very strong imb
	Learners give a detailed account of imb's in CH ₃ OH,			• hydrogen bond
	CH ₃ Cl and CH ₄ (with most fine detail) AND use the			• (contains) highly electronegative O (atom)
	relationship between strength of imb and bp AND give correct order of bp.			• bonded to a H (atom)
	There is a well-developed line of reasoning which is clear			• O-H bond is highly polar
	and logically structured. The information presented is			• H atom is very small
	relevant and substantiated.			H gets very close to O (on neighbouring
				molecule)
	Level 2 (3–4 marks)			• Ione pair on O 'lines up' with H (on neighbouring
	Learners give a detailed account of imb's in two out of			molecule) / form directional bond between O and
	three of CH ₃ OH, CH ₃ C <i>l</i> and CH ₄ (with most fine detail) AND give the relationship between strength of imb and			H
	bp or give correct order of bp			CH ₃ C <i>l</i>
	OR a brief account of imb's in all three (with some fine			• permanent dipole-permanent dipole/pd-pd bonds
	detail) AND the correct order of bp			 not as strong as hydrogen bonds
	There is a line of reasoning presented with some			• (contains) electronegative Cl (atom)
	structure. The information presented is relevant and			C-Cl bond is polar
	supported by some evidence.			 permanent dipole in CH₃Cl
				CH₄
	Level 1 (1–2 marks) Learners give a detailed account of imb's in one out of			• instantaneous dipole – induced dipole bonding/
	three of CH ₃ OH, CH ₃ C <i>l</i> and CH ₄ (with most fine detail)			Van der Waals'/ London
	AND give correct order of bp			weaker than pd-pd
	OR a brief account of imb's in two out of three			no electronegative atom
	OR the correct order of bp			• molecule is non-polar
	There is an attempt at a logical structure with a line of			unequal distribution of electron density
	reasoning. The information is in the most part relevant.			• causes temporary dipole in CH ₄
	0 marks			• induces dipole in neighbouring CH ₄
	0 marks No response or no response worthy of credit.			Relationship of bond strength to bpt
	The response of the response worthy of Great.			• stronger the imb, the higher the bpt
				Order of boiling points
				• order of b.p. is CH ₃ OH > CH ₃ C <i>l</i> > CH ₄

(e)	(i)	$CH_3Cl + H_2O \rightarrow CH_3OH + HCl \checkmark$	1	1.2	
	(ii)	bromomethane AND the C-Br bond enthalpy is lower/weaker than the C-Cl bond enthalpy ✓	1	2.3	
	(iii)	nucleophilic AND substitution ✓	1	1.2	
(f)		FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 3.8×10^8 (dm³) award 4 marks $M_r (CH_3Cl) = 50.5$ $n (CH_3Cl) = (8.0 \times 10^2 \times 10^6 / 50.5) = 1.58 \times 10^7$ mol \checkmark $(pV = nRT) \ V = nRT/p \ \checkmark$ $V = [1.58 \times 10^7 \times 8.314 \times (16+273) / 1.00 \times 10^5]$ $= 3.81 \times 10^5 \ m^3 \ \checkmark$ $V = 3.8 \times 10^8 \ dm^3 \ \checkmark$	4	2.2 (x4)	ALLOW ecf
(g)	(i)	H H H H H H	2	2.5 (x2)	Curly arrows should start (when projected back if necessary) on the relevant bond or lone pair of N in NH ₃ and end (when projected forward if necessary) on the atom concerned or the bond about to be formed.
	(ii)	Ammonia reacts with methylamine methylamine (also) reacts with chloromethane ✓	1	2.5	ALLOW answer shown as a drawn mechanism
		Total	22		

(Question		Answer		AO element	Guidance	
4	(a)		(In a position of dynamic equilibrium, the) concentrations of reactants and products do remain constant ✓ (The) forward and reverse reactions have not stopped ✓ (but) occur at equal rates ✓	3	3.2 (x3)		
	(b)	(i)	$K_c = [CH_3OH] / [CO][H_2]^2 \checkmark$	1	1.1		
		(ii)	CHECK ANSWER ON ANSWER LINE If answer = 0.113 (mol dm ⁻³) award 2 marks $[H_2] = \sqrt{([CH_3OH]/ K_c [CO])} \checkmark$ $[H_2] = 0.113 \text{ (mol dm}^{-3}) \checkmark$	2	2.4	ALLOW ecf	

			0.44.5	
(c)*	Please refer to the marking instructions on page 5 of this mark scheme for guidance on how to mark this question. Level 3 (5–6 marks) Learners give an account of BOTH yield and rate for BOTH pressure and temperature (with some explanatory points) and draw a conclusion There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) Learners give an outline account of BOTH yield and rate for BOTH pressure and temperature OR Learners give a detailed account of EITHER yield OR rate for BOTH pressure and temperature OR yield and rate for one of temp/pressure (with some explanatory points) There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1–2 marks) Learners give an outline account of EITHER yield OR rate for EITHER pressure OR temperature There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. O marks No response or no response worthy of credit.	6	2.1(x3) 3.2(x3)	Indicative scientific points include: (explanatory points in italic) High pressure - yield increase yield of methanol / shifts to rhs poe shifts to side with fewer moles (of gas) if change made to system in equilibrium the poe shifts to oppose change (LCP (statement included either here and/or for 'low temp – yield') as this will reduce the pressure High pressure - rate increase rate of reaction reacting particles are closer together collide more frequently Low temperature - yield increase yield of methanol poe shifts in direction of exothermic reaction forward reaction is exothermic / gives out heat this will increase the temperature Low temperature - rate decrease rate of reaction reacting particles have less energy fewer collisions have required act. en. Conclusions temperature is compromise rate/yield high pressure is good (AW) limited by cost/safety

(d)		3		
	↑			DO NOT ALLOW double-ended arrows for E _a
	enthalpy $CO(g) + 2H_2(g) \qquad \qquad E_a \text{ (uncat)}$ $E_a \text{ (cat)}$ $CH_3OH(g)$			IGNORE an arrow for ∆H
(ii)	progress of reaction labelled energy level of CH ₃ OH below that of reactants ✓ enthalpy profile AND E _a label for uncatalysed reaction ✓ enthalpy profile AND E _a label for catalysed reaction lower than that for uncatalysed reaction ✓ heterogeneous ✓ bond fission/breaking in reactants ✓	1 2	1.1 (x3) 1.1 1.1 (x2)	
	(bond) fusion/making in product ✓	4	1.1 (٨٤)	
	Total	18		

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

