

Mark Scheme (Results)

Summer 2022

Pearson Edexcel GCE Chemistry (9CH0) Paper 03 General and Practical Principles in Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u> for our BTEC qualifications.

Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson. Their contact details can be found on this link: <u>www.edexcel.com/teachingservices</u>.

You can also use our online Ask the Expert service at <u>www.edexcel.com/ask</u>. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>

Summer 2022 Question Paper Log Number P67905 Publications Code 9CH0_03_2206_MS All the material in this publication is copyright © Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:

i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clearii) select and use a form and style of writing appropriate to purpose and to

ii) select and use a form and style of writing appropriate to purpose and to complex subject matter

iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer. Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer.

ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.

Full marks will be awarded if the candidate has demonstrated the above abilities.

Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Question Number	Answer	Additional guidance	Mark
1(a)	An answer that makes reference to the following points:	mass and atom only need to be mentioned once each in M1 or M2	(2)
	 (the relative atomic mass of an element is) the weighted mean of the masses of its atoms / isotopes (1) 	Accept the weighted mean mass of an atom Allow 'average' for 'mean' but not for 'weighted' Allow the mean mass of all atoms Do not award just 'element' for atom / isotope Do not award the weighted mean mass of an isotope Ignore mention of mole.	
	 relative to 1/12 of the mass of carbon-12 / relative to carbon-12 which has a mass of exactly 12 units (1) 	Allow compared instead of relative Do not award M2 if mass number mentioned Note : the equation: $\frac{weighted mean mass of an atom}{\frac{1}{12} of the mass of a carbon 12 atom}$ scores both marks	

Question Number	Answer	Additional guidance	Mark
1(b)	 expression for weighted mean (1) calculation of relative atomic mass and correct rounding to 3 SF (1) 	Example of calculation $\frac{(84.80 \times 20) + (2.26 \times 21) + (12.94 \times 22)}{100}$ $= (20.2814) = 20.3$ Correct answer with no / some working scores (2) Allow TE only on a transcription error from data Ignore units	(2)

(Total for Question 1 = 4 marks)

Question Number	Answer	Additional Guidance	Mark
2(a)(i)	An explanation that makes reference to the following points:	Penalise omission of 'd' once only	(4)
	Splitting		
	• (ligand / water molecule causes) d orbitals to split (into 2	Allow d subshell / shell for d orbitals	
	energy levels) (1)	Do not award 'a d orbital is split'	
		Do not award 'electrons are split'	
	Absorption		
	 electrons absorb energy (in the visible region) / photons (of visible light) (1) 	Allow energy / photons / light absorbed	
	Promotion		
	• to promote electrons (to higher d orbitals)	Allow d-d transitions occur	
	or	Allow electrons are excited / jump for promote	
	electrons move from lower to higher energy (d) orbitals /	Ignore reference to electron(s) relaxing / dropping to	
	levels (1)	ground state	
		Do not award d-s transitions	
	Colour	Allow reflected / emerged / seen	
	• the remaining light / unabsorbed light / complementary colour / pink light is transmitted (1)	Do not award 'emitted'	

Question Number	Answer	Additional Guidance	Mark
2(a)(ii)	An explanation that makes reference to the following points:	Pairs only needs to be mentioned once in M1 or M2 Allow areas of electron density for pairs of electrons	(3)
	Electron pairs		
	• 6 (dative) pairs of (bonding) electrons (around cobalt ion) (1)	Allow 6 bond(ing) pairs May be shown on diagram but dative bonds must be between O and Co ²⁺ Do not award mention of having any lone pairs	
	Minimise repulsion	bo not award mention of naving any fone pairs	
	 (electron / bond pairs) arranged in order to minimise repulsion (1) 	Allow to maximise separation between electron / bond pairs or the electron / bond pairs are as far apart as possible Ignore equal repulsion between bond pairs Ignore comments based on repulsion / separation between bonds / atoms Ignore comments on repulsion between bond pairs and lone pairs	
	Shapeso shape is octahedral (1)	Allow 3-D diagram to show octahedral shape Allow square based bi pyramidal Do not award octagonal No TE on incorrect number of electron pairs Ignore bond angles	

Question Number	Answer	Additional Guidance	Mark
2(a)(iii)	An answer that makes reference to the following points:		(3)
	Rinsed		
	• rinsed to remove cobalt(II) sulfate (solution) (1)	Allow to remove remaining solution Allow to remove impurities that didn't crystallise Allow just 'to remove impurities' Ignore to remove ammonium sulfate Ignore to remove solvent Do not award to remove insoluble impurities	
	Ice-cold water • ice-cold water minimises / prevents ammonium cobalt(II) sulfate / crystals (re)dissolving (1)	Allow the crystals are insoluble / less soluble in cold water Ignore to stop the reaction Do not award to stop the crystals melting	
	 Warm oven warm oven (rather than hot) to ensure water of crystallisation is not removed (during drying) or to stop the crystals melting (1) 	Allow to dry crystals / remove water Do not award to remove water of crystallisation / heat to constant mass	

Question Number	Answer	Additional Guidance	Mark
2(b)	An answer that makes reference to two of the following points:	Allow e.g. crystals / salt / solid / product for ammonium cobalt(II) sulfate	(2)
	 some ammonium cobalt(II) sulfate solution lost if it 'spits' out of basin when heated (in Step 1) (1) 	Do not award crystals evaporated for M1 only	
	 some ammonium cobalt(II) sulfate remains in solution (in Step 1) (1) 	Allow the crystals weren't left to crystallise for long enough	
	 some ammonium cobalt(II) sulfate is soaked into the filter paper/ some ammonium cobalt(II) sulfate crystals remain on filter paper (in Step 2) 	Allow just 'solid is lost during filtration'	
	 transfer losses from reaction flask / beaker to evaporating basin / from evaporating basin to filter funnel (in Steps 1 and 2) (1) 	Allow any type of specific transfer loss e.g. some product left behind in the beaker / flask / evaporating basin	
	• some water of crystallisation is lost during the drying process (in Step 4) (1)	Allow crystals decompose during drying	
		Allow some ammonium cobalt(II) sulfate dissolves in ice-cold water (in Step 3)	
		Ignore formation of alternative product Ignore reaction is reversible	

(Total for Question 2 = 12 marks)

Question Number	Answer	Additional Guidance	Mark
3 (a)(i)	A description that makes reference to the following points:		(3)
	• any mention of platinum / nichrome wire / loop (1)	Allow NiCr for nichrome Allow silica rod Ignore 'inoculating' / 'sterilising' Do not award just nickel or chromium	
	• dip the wire into (clean / fresh concentrated) hydrochloric acid / HCl (1)	Allow mention of HCl before or after dipping wire into solid e.g. cleaning or mixing solid and HCl to make a paste Ignore concentration of HCl Ignore just 'acid' / other acids specified Do not award HCl reacting with flame test wire	
	 dip the (wet) wire into the solid and place in a (non-luminous / roaring / blue Bunsen) flame (1) 	Allow salt / compound / paste / sample / solution for solid Allow through the flame / on the edge of the flame for in the flame Do not award element / metal for solid Do not award over / above / under the flame Do not award just 'into a Bunsen' Do not award 'burn in flame' Do not award flame if Bunsen has air-hole closed / safety flame	

Question Number	Answer	Additional guidance	Mark
3(a)(ii)	• Na ⁺	Ignore state symbols Ignore sodium / sodium ion Do not award incorrect charge	(1)

Question Number	Answer	Additional Guidance	Mark
3(b)(i)	• SO4 ²⁻	Ignore state symbols Ignore sulfate(VI) / sulfate/ sulphate	(1)
		Do not award sulfate(IV) / sulfite / hydrogensulfate Do not award incorrect charge	

Question Number	Answer	Additional Guidance	Mark
3(b)(ii)	• Na ₂ SO ₄	Ignore state symbols Ignore names Allow TE from other ions, with correct charges, given in (a)(ii) and (b)(i) Allow large numbers e.g. Na2SO4 but not superscripts e.g. Na ² SO ⁴	(1)

Question Number	Answer	Additional Guidance	Mark
3(c)(i)	 An explanation that makes reference to the following points: (not using a lid means) some of salt Y could be lost from crucible during heating (1) 	Allow solid / product / crystals for 'salt' Allow 'salt spits / jumps out' / 'salt escapes' from crucible Ignore gas escapes Do not award 'salt evaporates'	(2)
	 (mass loss greater than expected), so <i>n</i> / amount of water (of crystallisation) greater (than expected) (1) 	M2 dependent on M1 or salt evaporates	

Question Number	Answer	Additional Guidance	Mark
3(c)(ii)	An explanation that makes reference to the following points:		(2)
	 (heating for only 1 minute may mean) not all the water (of crystallisation) has been removed (1) 	Allow evaporated / boiled off for removed Allow (only) partial dehydration Ignore incomplete reaction	
	 (mass loss less than expected), so <i>n</i> / amount of water (of crystallisation) less (than expected) (1) 	M2 dependent on M1 or incomplete reaction	

Question Number	Answer			Additional Gui	dance	Mark
3(c)(iii)			Example of calcula	ation		(3)
				K ₂ CO ₃	H ₂ O	
			Moles =	71.9 / (138.2)	(100 - 71.9) / 18	
	• calculation of moles of K ₂ CO ₃	(1)		= 0.52026	= 1.56111	
			Ratio =	= 0.52026 /	= 1.56111 /	
	• calculation of moles of H ₂ O	(1)		0.52026	0.52026	
				= 1	= 3	
			<i>n</i> =	3		
	• deduction of <i>n</i>	(1)	Accept use of 0.71			
			Allow TE from M		. 0.50101	
			Allow use of 138 f			
			Ignore SF includin M3 must be 1 SF	ng ISF in MIT and I	N12	
			MS must be 1 SF			
			Accept alternative	methods e a		
			138.2 = 0.71			
			$\frac{130.2}{138.2 + 18n} = 0.71$	1) (1)		
			38.8342 = 12.942n	n(1) so $n = 3(1)$		
			or			
			$M_{\rm r}$ of hydrated salt	t = 138.2 = 192.2 (1)	
				0.719		
			mass of water $= 19$	92.2 - 138.2 = 54 ((1)	
			n = 54/18 = 3(1)			
			or			
			138.2 = 71.9% so 2	28.1% is water (1)	$) \ \underline{138.2} \ge 28.1 = 54 \ (1)$	
					71.9	
			n = 54/18 = 3(1)			
				41		
			Correct answer wi	U U		
			Correct answer wi	in some correct we	orking scores (3)	

(Total for Question 3 = 13 marks)

Question Number	Answer		Additional Guidance	Mark
4(a)(i)	• calculation of ΔS_{system}	(1)	Marks should be awarded for method 1 or method 2 but not via mixed methods. If both methods used, then award higher mark. <u>Example of calculation</u> $(213.6 + 70.4) - 112.1 = 171.9 (J K^{-1} mol^{-1})$	(5)
	• calculation of $\Delta S_{\text{surroundings}}$	(1)	-169.3 / 298 = -0.56812 (kJ K ⁻¹ mol ⁻¹) or (-169.3 x 1000) / 298 = -568.12 (J K ⁻¹ mol ⁻¹)	
	• conversion of ΔS_{system} or $\Delta S_{\text{surroundings}}$ for consistent units	(1)	$\Delta S_{\text{surroundings}}$ converted to J K ⁻¹ mol ⁻¹ or ΔS_{system} converted to kJ K ⁻¹ mol ⁻¹ M3 could be subsumed as part of either M1 or M2	
	• calculation of ΔS_{total} and corresponding units	(1)	171.9 + (- 568.12) = - 396.22 J K ⁻¹ mol ⁻¹ or 0.1719 + (-0.56812) = -0.39622 kJ K ⁻¹ mol ⁻¹ Allow units to be missing here if correct units given for ΔS_{system} and $\Delta S_{\text{surroundings}}$ Correct answer with units with some or no working scores (4) Ignore SF except 1 SF Allow TE throughout calculation	
	 comment on thermal stability at 298 K Alternative method on next page 	(1)	Stand alone mark on any negative value for ΔS_{total} Negative value / <0 and so reaction is not feasible / it is thermodynamically stable (at 298 K)/ Ignore just 'so the reaction is not feasible' No TE for positive values for ΔS_{total}	

4(a)(i) continued	Alternative method using ΔG	Example of calculation	(5)
continued	• calculation of ΔS_{system} (1)	$(213.6 + 70.4) - 112.1 = 171.9 (J K^{-1} mol^{-1})$	
	• calculation of $T\Delta S_{\text{system}}$ (1)	$298 \text{ x } 171.9 = 51226 \text{ (J mol}^{-1}\text{)}$ M2 could be subsumed as part of M3	
	• conversion of $T\Delta S_{system}$ or ΔS_{system} or ΔH for consistent units (1)	ΔH converted to J mol ⁻¹ or ΔS_{system} converted to kJ K ⁻¹ mol ⁻¹ or T ΔS_{system} converted to kJ mol ⁻¹ M3 could be subsumed as part of M4	
	• calculation of ΔG_{total} and corresponding units (1)	$169300 - 51226 = (+) 118074 \text{ J mol}^{-1}$ or (+) 118.074 kJ mol ⁻¹ Correct answer with units with some or no working scores (4) Ignore SF except 1 SF Allow TE from M1 to M4	
	• comment on thermal stability at 298 K (1)	Stand alone mark on any positive value for ΔG Positive value / >0 and so reaction is not feasible (at 298 K) Ignore just 'so reaction is not feasible' No TE on negative values for ΔG	

Question Number	Answer	Additional Guidance	Mark
-	Answer • recognition that $\Delta S_{surroundings} \ge -171.9 \text{ J K}^{-1} \text{ mol}^{-1}$ for decomposition to be feasible (1) • substitution and rearrangement to find T (1) • calculation of T and (1)	$\frac{\text{Example of calculation}}{\Delta S_{\text{total}} = \Delta S_{\text{system}} - \underline{\Delta H} = 0}{T}$ Or $\Delta S_{\text{system}} = \underline{\Delta H}{T}$ Allow this equation rearranged This may be subsumed in M2 $-171.9 = (-169.3 \times 1000) / T$ $T = (-169.3 \times 1000) / -171.9$ TE on ΔS_{system} from 4(a)(i) $(= 984.87 \text{ K})$	Mark (3)
	conversion to °C and answer given to 3 SF (1)	(= 711.87°C) = 712°C TE on M1 and M2 but do not award any temperature below 0°C Correct answer to 3 SF and in °C scores (3) Alternative method for M1 and M2 $\Delta G = \Delta H - T\Delta S = 0$ or $\Delta H = T\Delta S$ This may be subsumed in M2 (1) 169300 = T x 171.9 T = 169300/171.9 (1) TE on ΔS_{system} from 4(a)(i)	

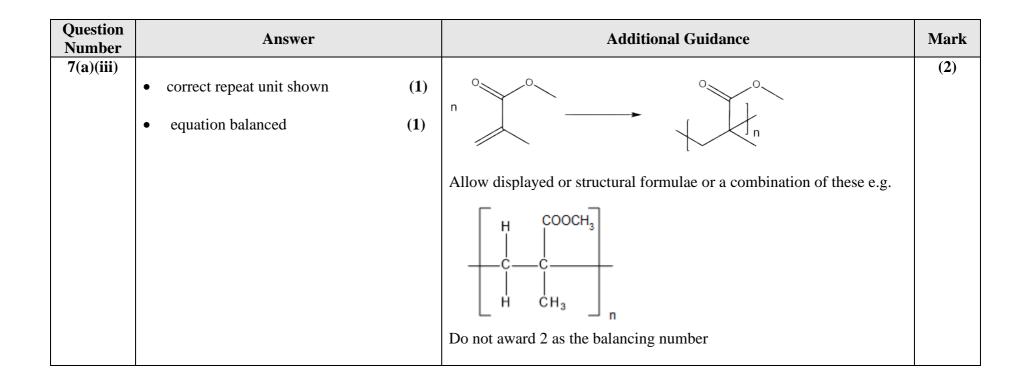
Question Number	Answer	Additional Guidance	Mark
4(b)	 An explanation that makes reference to the following points: (Magnesium carbonate is less thermally stable because) Size the magnesium ion / Mg²⁺ is smaller / has a greater charge density (1) 	Allow reverse arguments Ignore reference to 'covalent character' Ignore reference to lattice energies Allow ionic radius of cation increases down the group / charge density of cation decreases down the group Allow magnesium carbonate has a smaller cation Allow magnesium ions have fewer shells of electrons Ignore 'magnesium (atom) is smaller' Ignore atomic radius	(3)
	 Polarising power so more likely to polarise / distort (the carbonate (ion) / anion) (1) 	Do not award M1 if mention of different / incorrect charges on magnesium and barium ions Allow 'magnesium ion has more polarising power' Allow polarising power decreases down the group Allow magnesium ion has more electron pulling power on (the carbonate (ion) / anion) Do not award if MgCO ₃ stated as more stable	
	 Bonds and so weaken the C-O bond or the bond(s) within the carbonate ion (1) 	Allow break (more easily) for weaken Allow C=O bonds for C–O Do not award reference to weakening unspecified bonds Do not award weakening bond between cation and anion	

Question Number	Answer	Additional Guidance	Mark
4(c)	An answer that makes reference to the following points:		(2)
	 (usually carbonates react with acids and) produce a (colourless) gas / CO₂ (which is an expected observation for the test) (1) 	Allow effervescence / fizzing / bubbles for observation Allow little / no gas / CO ₂ formed when sulfuric acid is used Ignore references to limewater / lighted splint to test for CO ₂	
	 (but) the barium sulfate produced is insoluble (so the carbonate may appear to not react / not dissolve in acid) (1) 	Allow a (white) precipitate (of barium sulfate) forms Allow they should have used hydrochloric / nitric acid as the salts formed are soluble Accept bubbles of gas would not be expected because barium sulfate is insoluble for 2 marks	

(Total for Question 4 = 13 marks)

Question Number		Acceptable Answ	ers	Additional Guidance	Mark
5*	logically structured reasoning. Marks are awarded is structured and sh The following table indicative content. Number of indicative marking points seen in answer 6 5–4 3–2 1 0	answer with linkage for indicative conten- nows lines of reasonin e shows how the mark Number of marks awarded for indicative marking points 4 3 2 1 0 e shows how the mark	t and for how the answer	Guidance on how the mark scheme should be applied: The mark for indicative content should be added to the mark for lines of reasoning. For example, an answer with five indicative marking points that is partially structured with some linkages and lines of reasoning scores 5 marks (3 marks for indicative content and 2 marks for partial structure and some linkages and lines of reasoning). If there are no linkages between points, the same five indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages).	(6)

General p	o marks for reasoning. points to note
-	points to note
-	points to note
	-
from the r	s any incorrect chemistry, deduct mark(s) reasoning. If no reasoning mark(s) do not deduct mark(s).
sider the soning	
	sider the


Ind	dicative content	If names and formulae are given, both must be correct
•	IP1 Type of reaction Both reactions are (examples of) electrophilic substitution	Do not award addition-elimination for substitution
•	IP2 Products Benzene forms bromobenzene and phenol forms 2,4,6-tribromophenol	Allow these products shown as structures in equations, even if equations are not fully correct Allow any feasible dibromophenol / tribromophenol Ignore dibromobenzene / tribromobenzene
•	IP3 Comparison of reactivity Benzene is less reactive (than phenol) / phenol is more reactive (than benzene)	
•	IP4 Conditions Benzene requires (a catalyst of) FeBr ₃ and phenol does not require a catalyst / can react with just bromine water	Allow Fe / FeCl ₃ / AlBr ₃ / AlCl ₃ / Lewis Acid catalyst Allow Friedel-Crafts catalyst / halogen carrier Can be shown in equation Allow phenol reacts at room temperature Ignore reference to heat / mechanism Allow IP4 if stated that only benzene requires a catalyst
•	IP5 Lone pair (Phenol is more susceptible to electrophilic attack) because the lone pair on the oxygen (atom in phenol) delocalises into the ring / π system	Allow lone pair on oxygen is donated into the ring Allow OH for oxygen
•	IP6 Electron density Increasing the electron density of the ring / π system	Allow activates the ring Do not award increases the electronegativity / charge density of the ring Penalise omission of 'the ring / π system' once only in IP5 and 6

Question Number	Answer	Additional Guidance	Mark
6(a)		Example of calculation	(4)
6(a)	 calculation of masses of carbon and hydrogen (1) calculation of mass of oxygen (1) calculation of moles of carbon, hydrogen and oxygen (1) calculation of ratio (and matched to empirical formula) (1) 	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	(4)
		this matches the balanced equation $C_8H_{16}O_2 + 11O_2 \rightarrow 8CO_2 + 8H_2O /$ $C_4H_8O + 11/2O_2 \rightarrow 4CO_2 + 4H_2O (1)$	

Question Number	Answer	Additional Guidance	Mark
6(b)	An answer that makes reference to the following points:	Allow credit for annotations on table in p14 and on labelled structures Allow adjacent protons / hydrogens for protons on adjacent C Penalise H ⁺ for protons once only	(7)
	Peak at 2.50 ppm	I I I I I I I I I I I I I I I I I I I	
	 identified as CH₃CO (as relative peak area = 3 / singlet so r protons on adjacent C) (1) 		
	Peak at 1.56 ppm		
		1) Allow 4 protons / hydrogens	
	• (the 2 CH ₂ groups / hydrogen environment) next to CH ₃ groups as peak is a quartet (
	Peak at 0.92 ppm		
		1) Allow 6 protons / hydrogens	
	• (the 2 CH ₃ groups / hydrogen environment) next to CH ₂ groups as peak is a triplet	1)	
	Peak at 1.43 ppm		
	• CH ₃ group with no protons on adjacent carbon atoms as	Allow just CH_3 identified in M6 if singlet explained in M1	
	• structure of Q ($\begin{array}{c c} 0 & H_2C \\ \parallel & \parallel \\ C_{C} & C_{C} \\ \end{array} \\ \begin{array}{c} C_{C} \\ C_{C} \\ \end{array} \\ \end{array} \\ \begin{array}{c} C_{C} \\ C_{C} \\ \end{array} \\ \end{array} \\ \begin{array}{c} C_{C} \\ C_{C} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} C_{C} \\ C_{C} \\ \end{array} \\ \end{array} \\ \end{array} $ \\ \begin{array}{c} C_{C} \\ C_{C} \\ \end{array} \\ \end{array} \\ \begin{array}{c} C_{C} \\ \end{array} \\ \end{array} \\ \begin{array}{c} C_{C} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} C_{C} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} C_{C} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} C_{C} \\ \end{array} \\ \end{array} \\ \begin{array}{c} C_{C} \\ C_{C} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array}	
		H ₃ C O H ₂ C CH ₃	
	1	(Total for Question 6 =	- - 11 marl

Question Number	Answer	Additional Guidance	Mark
7(a)(i)		Penalise omission of lone pair once in M1 and M4 Penalise use of single-headed arrows only once Penalise use of incorrect nucleophile once only in M1 e.g. OH ⁻ Allow skeletal, displayed or structural formulae	(4)
	 curly arrow from lone pair on C of CN⁻ ion to C of C=O (1) 	Allow CN^- to attack from any angle Allow CN triple bond displayed Do not award curly arrow from lone pair on N Do not award CN^{δ^-}	
	 dipole on C=O and curly arrow from C=O bond to or just beyond O (1) intermediate structure (1) 	Ignore missing lone pair on O Ignore connectivity for vertical CN group if M1 awarded Do not award O^{δ^-}	
	• curly arrow from lone pair on O to H of HCN and curly arrow from H-C bond to anywhere on CN (1)	Allow curly arrow from lone pair on O ⁻ to H ⁺ Ignore dipole on HCN Ignore products, even if incorrect	
Allow straig Curly arrow If candidate	of mechanism M1 CN M1 CN M3 CN CN CN M3 CN		r the correct

Question Number		Answer	Additional Guidance	Mark	
⁻⁷ (a)(ii)	Reagent 2	$ \begin{array}{c} (\text{conc}) \text{ phosphoric acid / } H_3PO_4 \\ (\text{conc}) \text{ sulfuric acid/ } H_2SO_4 \\ \text{aluminium oxide / } Al_2O_3 \end{array} $ (1)	Ignore connectivity of groups All marks are stand alone Allow 'alumina' Do not award steam / water	(6)	
	Structure of compound A	CN (1) H CH_3	Do not award dilute for either acid Allow structural, displayed or any combination of structural, displayed or		
	Reaction type 3	(acid) Hydrolysis (1)	skeletal for Compounds A and B		
	Structure of compound B		Do not award hydration / halogenation for M3 Allow TE for M4 based on incorrect M2 structure provided the nitrile group has been hydrolysed correctly and no other changes		
	Reagent 4 Reaction type 4	CH ₃ OH / methanol (1)Esterification / condensation(1)	Allow addition- elimination for condensation in M6		

Question Number		Additional guidance	Mark
7(b)	 A diagram that shows the following points: Left-hand side heat source, flask with reaction mixture and antibumping granules, still head and thermometer opposite 'exit' (1) 	Example of diagram	(3)
	 Centre downward angled condenser with separated water jacket and with correct water flow (1) 	Allow M2 if condenser is horizontal but not vertical	
	Right-hand side • collection vessel (1)	Allow beaker / any type of flask Do not award M3 if apparatus is sealed Notes: Diagram of heat under reflux scores (0) Ignore lines across joints as part of Quickfit apparatus	

Question Number	Answer	Additional Guidance	Mark
7(c)(i)	An explanation that makes reference to any two of the following points:	Ignore general references to removing impurities Allow crystals / solid / precipitate forming for crystallisation	(2)
	• to make sure the solution doesn't cool down (significantly) (1)	Allow to keep the solution warm	
	• to prevent (premature) crystallization taking place (in funnel / on filter paper) (1)	Accept to prevent crystals forming during filtration Allow to make sure the substance stays in solution	
	• which would reduce yield (of product) (1)		

Question Number	Answer	Additional Guidance	Mark
7(c)(ii)	An explanation that makes reference to any two of the following points:	Allow crystals / solid / precipitate for product	(2)
	• Step 4: product less soluble in cooler solvent (than hot solvent, so product crystallises out) (1)	Allow product is insoluble in cold solvent	
	• Step 4 : (soluble) impurities present (in small amount so) stay in solution / remain dissolved (while product crystallises) (1)	Allow filtration removes the solution	
	 Step 5: filtering under reduced pressure removes more of the soluble impurities / removes the soluble impurities faster / produces a drier product (1) 	containing the impurities / separates the crystals from the soluble impurities Allow filtering under reduced pressure is faster (than gravity filtration) Ignore just 'use a Buchner funnel'	

Question Number	Answer	Additional Guidance	Mark
7(c)(iii)	An answer that makes reference to the following points:		(2)
	• (measure) melting temperature (of purified crystals) (1)		
	• compare to literature value (matched to original carbonyl compound) (1)	Allow compare to data book value / compare to value from (credible) internet source / compare to known melting temperature / compare to values in a database	

(Total for Question 7 = 21 marks)

Question Number	Answer		Additional Guidance	Mark
8(a)	 An answer that makes reference to the following points: Titration titrate (ethanoic acid /weak acid) with strong base / sodia hydroxide 	um 1)	Stand alone Allow any indication of a titration Allow acid added to base or base added to acid	(5)
	Then follow the three points for Method 1 or Method 2 Method 1		In both methods, ignore reference to making a standard solution / calibration of the pH probe or meter / practical details of carrying out the titration	
	• measure pH at regular intervals	(1)		
	• plot pH against volume (of strong base)	(1)	Allow plot a titration / pH curve	
	• use graph to find pH at half-equivalence point	(1)	Allow use graph to find pH at volume when half neutralised	
	OR Method 2			
	• use phenolphthalein indicator to find end-point	(1)	Allow thymol blue / thymolphthalein indicators Ignore colour change even if incorrect	
	• then add same volume of acid to mixture (at end-point)	(1)	Allow repeat titration (with same volumes but without indicator) then add original volume of acid to mixture (at end-point) or use same volume of acid and half the volume of base	
	• measure pH of resultant mixture (with pH meter)	(1)	Do not award pH at end point is 7	
	Determining K_a • (at half neutralisation pH = p K_a so) $K_a = 10^{-pH}$	(1)	Stand alone Allow $[H^+] = 10^{-pH}$ and $K_a = [H^+]$	

Question Number	Answer		Additional Guidance	Mark
8(b)	EITHER		Example of calculation	(3)
	• calculation of [H ⁺ (aq)]	(1)	$[H^{+}(aq)] = 10^{-4.70} = 1.9953 \text{ x } 10^{-5} \text{ (mol dm}^{-3}\text{)}$	
	• calculation of ratio of [acid]/[salt] or [salt]/[acid] or correvalues substituted into expression for ratio	ect (1)	$[acid]/[salt] = 1.9953 \times 10^{-5} / 1.74 \times 10^{-5}$ = 1.1467 : 1 / 1 : 0.872 or [salt]/[acid] = 1.74 \times 10^{-5} / 1.9953 \times 10^{-5} = 0.872 : 1 / 1 : 1.1467	
	 calculation of volume of acid required and salt required OR 	(1)	$(1.1467 / 2.1467) \times 500 = 267 \text{ cm}^3 \text{ acid}$ $500 - 267 = 233 \text{ cm}^3 \text{ salt}$	
	• calculation of log [acid]/[salt] using Henderson-Hasselba	lch (1)	4.7595 - 4.70 = 0.05945	
	• calculation of ratio of [acid]/[salt]	(1)	$10^{0.05945} = 1.1467 : 1$	
	• calculation volume of acid required and salt required ((1)	$(1.1467 / 2.1467) \times 500 = 267 \text{ cm}^3 \text{ acid}$ $500 - 267 = 233 \text{ cm}^3 \text{ salt}$ Allow 270 cm ³ acid and 230 cm ³ salt	
			Ignore SF except 1 SF but allow $2 / 2.0 / 2.00 x$ 10^{-5} for M1 in 'EITHER'	
			Allow TE from M1 throughout	
			Correct answer with no working scores (3)	

Question Number	Answer		Additional Guidance	Mark
8(c)	• calculation amount of H ₂ SO ₄ (aq) in mol	(1)	$\frac{\text{Example of calculation}}{= (40.4/1000) \times 0.370 = 0.014948}$	(6)
	 calculation amount of H⁺(aq) in mol / amount OH⁻(aq) needed 	(1)	0.014948 x 2 = 0.029896 (mol)	
	• calculation amount of OH ⁻ (aq) in mol	(1)	$= (51.2/1000) \ge 0.927 = 0.047462 \pmod{100}$	
	• calculation amount of excess OH ⁻ (aq) in mol	(1)	= 0.047462 - 0.029896 = 0.017566 (mol)	
	• calculation [OH ⁻] in resultant mixture	(1)	$= 0.017566 / (91.6/1000) = 0.19177 \pmod{\text{dm}^{-3}}$	
	• calculation pH of resultant mixture	(1)	$[H^+] = 1.00 \times 10^{-14}/0.19177 = 5.2146 \times 10^{-14} \pmod{4m^{-3}}$ pH = -log 5.2146 x 10 ⁻¹⁴ = 13.3 or 14 - (- log(0.19177)) = 13.3 Final answer needs to be to at least 1dp Allow TE throughout but TE from M5 to M6 must give a pH > 7 Correct answer with no / some working scores 6 marks Ignore SF except 1 SF in M1 to M5	

(Total for Question 8 = 14 marks)

Question Number	Answer	Additional Guidance	Mark
9(a)(i)	 An answer that makes reference to one of the following points: the colour of the pineapple juice masks the colour change or methyl orange only works with a strong acid or methyl orange does not change colour in the vertical section of the titration curve 	Allow methyl orange is a similar colour to pineapple juice Accept methyl orange cannot be used with a weak acid (and strong alkali) Allow the pH range / $3.2-4.4$ / p K_{in} of methyl orange is below the equivalence point / too low Allow the colour change would occur before the equivalence point / is not over the equivalence point Allow the pH at the equivalence point is not in the pH range of methyl orange Allow end point for equivalence point Ignore just 'no colour change observed' Ignore just 'end point is not accurate'	(1)

Question Number	Answer	Additional Guidance	Mark
9(a)(ii)	An explanation that makes reference to the following points:		(2)
	• the titre value would be greater (than expected) (1)		
	• as the titre value includes the volume of the air bubble (as well as sodium hydroxide solution) (1)	M2 conditional on M1 scored Allow some alkali / solution is used to fill the air bubble / jet Allow there is less sodium hydroxide in the burette than expected	

Question Number	Answer		Additional Guidance	Mark
9(b)(i)	 An explanation that makes reference to the following points: (at the end point) all ascorbic acid is used up so the iodine is no longer reduced (to iodide ions) or 			(3)
	 ascorbic acid reacts with the iodine until all the (ascorbic) acid is up the (slight excess) iodine reacts / forms complex with the starch 	(1) (1)	Stand alone Allow starch in the presence of iodine Do not award starch and iodide ions	
	• (changing from yellow) to a blue/black colour	(1)	Stand alone Allow just black or just (dark) blue Ignore initial colour of solution Do not award blue/black to colourless	

Question Number	Answer	Additional Guidance	Mark
9(b)(ii)		Example of calculation	(5)
	• calculation of amount of IO_3^- (aq) (1)	= $(9.50/1000) \ge 0.00100 = 9.50 \ge 10^{-6} \pmod{10^{-6}}$	
	 calculation of amount of iodine / ascorbic acid in 5.00 cm³ sample (1) 	= 9.50 x 10 ⁻⁶ x 3 = 2.85 x 10 ⁻⁵ (mol) TE on M1	
	 calculation of amount of ascorbic acid in 150.0 cm³ sample (1) 	= $2.85 \times 10^{-5} \times 30 = 8.55 \times 10^{-4}$ (mol) TE on M2	
	 calculation of amount of citric acid in 150.0 cm³ sample (1) 	= 8.00 x 10^{-3} - 8.55 x 10^{-4} = 7.145 x 10^{-3} (mol) TE on M3	
	 calculation of mass of citric acid in 150.0 cm³ sample (1) 	= 7.145 x 10^{-3} x 192 = 1.37184 g = 1.37 (g) TE on M4	
		Ignore SF except 1 SF Correct answer with some or no working scores (5)	

Question Number	Answer	Additional Guidance	Mark
9(c)	An explanation that makes reference to the following points:		(3)
	 compound E and as it has (two) COOH / (carboxylic) acid group(s) (1) 	Allow Compound E is a (di)carboxylic acid Ignore reference to OH group Do not award carbonyl group(s)	
	 these / this will (also) react with the NaOH / in the titration (in Experiment 1) 	Do not award if OH group reacts with NaOH	
	 (the titre will be greater in Experiment 1 so suggests a greater total amount of acid) so the final mass of citric acid calculated will be greater (than the true amount) or the total amount of acid (calculated from the titration) includes citric acid and E so the actual mass of citric acid is less (than calculated in (b)(ii) (1) 	Conditional on compound E selected	

(Total for Question 9 = 14 marks)

Question Number	Answer		Additional Guidance	Mark
10(a)(i)	An explanation that makes reference to the following points:			(2)
	• to stop / freeze / quench the reaction (1)	Allow 'to allow time for the titration to be carried out' Ignore just 'slows down the reaction'	
	• by neutralising the (remaining sulfuric) acid / H ⁺ (1)	Allow by reacting with the acid / removing the acid Allow catalyst for acid Do not award if incorrect acid specified	

Question Number	Answer	Additional Guidance	Mark
10(a)(ii)	• ionic equation	$\begin{array}{l} \underline{\text{Examples of equations}}\\ \text{NaHCO}_3 + \text{H}^+ \to \text{CO}_2 + \text{H}_2\text{O} + \text{Na}^+\\ \text{Or}\\ \text{NaHCO}_3 + \text{H}_3\text{O}^+ \to \text{CO}_2 + 2\text{H}_2\text{O} + \text{Na}^+\\ \end{array}$ $\begin{array}{l} \text{Allow}\\ \text{HCO}_3^- + \text{H}^+ \to \text{CO}_2 + \text{H}_2\text{O}\\ \text{HCO}_3^- + \text{H}^+ \to \text{H}_2\text{CO}_3\\ \end{array}$ $\begin{array}{l} \text{Allow multiples}\\ \text{Allow balanced equations with } \text{H}_3\text{O}^+\\ \text{Allow Na}^+ \text{ and } \text{SO}_4^{2^-} \text{ in equations, provided they}\\ \text{are crossed through}\\ \text{Ignore state symbols, even if incorrect}\\ \end{array}$ $\begin{array}{l} \text{Do not award}\\ \text{CO}_3^{2^-} + 2\text{H}^+ \to \text{CO}_2 + \text{H}_2\text{O}\\ \end{array}$	(1)

Question Number	Answer		Additional Guidance	Mark
10(b)(i)	 y axis labelled with volume and cm³ and x axis labelled with time and min and suitable scale all points plotted correctly and line of best fit 	(1) 1)	Example of graph	(2)

Question Number	Answer	Additional Guidance	Mark
10(b)(ii)	An explanation that makes reference to the following points:	Ignore references to half-life	(3)
	• [I ₂] is proportional to the volume (of sodium thiosulfate) (1)	Allow description of proportional	
	 gradient does not change / is constant / the graph shows a straight line / is linear (as [I₂] decreases) (1) 	Allow decreases at a constant rate Ignore volume (of sodium thiosulfate) / $[I_2]$ is proportional to time	
	• which means the rate doesn't change / increase or decrease (as [I ₂] increases or decreases) (1)	Allow $[I_2]$ does not affect the rate (of reaction) / rate is independent of $[I_2]$	

Question Number	Answer	Additional Guidance	Mark
10(c)(i)	An answer that makes reference to the following points:		(2)
	• Step 1 is the rate determining step (1)	Stand alone Allow RDS / slow step	
	 as it involves (1 mol of) both propanone and hydrogen ions (which matches the rate equation) (1) 	Conditional on M1 Allow it does not involve I ₂ (which is zero order) Allow it involves both species in the rate equation Allow I ₂ is not involved in the RDS so RDS must be before Step 2	

Question Number	Answer	Additional Guidance	Mark
10(c)(ii)	An explanation that makes reference to the following points:	Ignore reference to specific steps.	(2)
	(The statement is not valid because)		
	 one hydrogen ion is regenerated / reformed (so is acting as a catalyst) (1) 	Do not award M1 if candidate states that it is valid Ignore it is an autocatalyst	
	 the other hydrogen ion is lost from the propanone (when replaced by iodine) / is a (by-)product of the reaction / is used to form HI (1) 		

(Total for Question 10 = 12 marks)

TOTAL FOR PAPER = 120 MARKS

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom