WJEC Eduqas A LEVEL in CHEMISTRY # **Data Booklet** # Infrared absorption values | Bond | Wavenumber (cm ⁻¹) | |-----------------------|--------------------------------| | C—Br | 500 to 600 | | C—CI | 650 to 800 | | c-o | 1000 to 1300 | | c=c | 1620 to 1670 | | c=0 | 1650 to 1750 | | C≡N | 2100 to 2250 | | C—H | 2800 to 3100 | | O—H (carboxylic acid) | 2500 to 3200 (very broad) | | O—H (alcohol/phenol) | 3200 to 3550 (broad) | | N—H | 3300 to 3500 | ### ¹H NMR chemical shifts relative to TMS=0 | Type of proton | Chemical shift, δ (ppm) | | | | | |----------------------|-------------------------|--|--|--|--| | −CH ₃ | 0.1 to 2.0 | | | | | | R-CH ₃ | 0.9 | | | | | | R-CH ₂ -R | 1.3 | | | | | | CH ₃ —C≡N | 2.0 | | | | | | CH₃—CÇO | 2.0 to 2.5 | | | | | | -CH ₂ -C | 2.0 to 3.0 | | | | | | CH ₃ | 2.2 to 2.3 | | | | | | R-CH ₂ CI | 3.3 to 4.3 | | | | | | R—OH | 4.5 * | | | | | | -C = CH - CO | 5.8 to 6.5 | | | | | | CH=C | 6.5 to 7.5 | | | | | | Он—Он | 7.0 * | | | | | | R-C H | 9.8 * | | | | | | R-COH | 11.0 * | | | | | ^{*}variable figure dependent on concentration and solvent #### ¹³C NMR chemical shifts relative to TMS=0 # Type of carbon #### Chemical shift, δ (ppm) | | 0 | | Helium 2 | Neon 10 | Argon
18 | 83.8
Krypton
36 | Xe
Xenon
54 | (222)
Rn
Radon
86 | ē | | | | | | | |--------------------|--------------|---------|-----------------------|-------------------------------------|-------------------------------|-------------------------------|--------------------------------|-------------------------------|-------------------------------|--------------------------------|--------------------------------|----------------------|----|---------------------|-----------------------------------| | | 7 | | | 19.0
F
Fluorine
9 | 35.5
CI
Chlorine | 79.9
Bromine | 127
 | (210)
At
Astatine
85 | , | 175
Lu
Lutetium
71 | (257)
Lr
Lawercum
103 | | | | | | | 9 | | ock | 16.0
O
Oxygen
8 | S
Sulfur
16 | Selenium | 128
Te
Tellurium
52 | Polonium 84 | | Yb
Yb
Ytterbium | (254)
No
Nobelium
102 | | | | | | | 2 | | p Block | p Bk | p Blc | p Bk | p Ble | Nitrogen | 31.0 P | 74.9
As
Arsenic | Sb
Antimony
51 | 209
Bismuth
83 | 25 | Tm
Thulium
69 | (256)
Md
Mendelevtum
101 | | | 4 | | | 12.0
C
Carbon | 71000 | 72.6
Ge
Germanium
32 | Sn
Tin
50 | 207
Pb
Lead
82 | | 167
Er
Erbium
68 | Fm
Fm
Fermium
100 | | | | | | | 3 | | | 10.8
B
Boron
5 | 27.0
Al
Aluminium
13 | 69.7
Gallium
31 | 115
In
Indium
49 | 204
TI
Thallium
81 | | Ho
Holmium
67 | (254)
Essenium
99 | | | | | | щ | | | | 1 | 65.4
Zn
Zinc
30 | Cd
Cd
Cadmium
48 | 201
Hg
Mercury | | 163
Dy
Dysprosium
66 | (251)
Cf
Calfornum
98 | | | | | | | TABL | | | | | | 63.5
Cu
Copper
29 | Ag
Silver
47 | Au
Gold
79 | f Block | Tb
Terbium
65 | (245)
BK
Berkelium
97 | | | | | | THE PERIODIC TABLE | | dno | | | | Nickel 28 | 106
Pd
Palladium
46 | Platinum 78 | | 157
Gd
Gadolnium
64 | Curium
96 | | | | | | | | | | Symbol Name atomic Z number d Block | 2. | Co
Cobalt
27 | 103
Rh
Rhodium
45 | 192
Ir
Indium
77 | | (153)
Eu
Europium
63 | Am
Amendum
95 | | | | | | | Group | | Key | | ock | 55.8
Fe
Iron
26 | 101
Ruthenium
44 | 190
Os
Osmium
76 | | Samarium
62 | Plutonium
94 | | | | | | | Great | | | | g p | Mn
Manganese
25 | 98.9
Tc
Technetium
43 | 186
Re
Rhenium
75 | | Promertium 61 | Neptunium
93 | | | | | | | | | | | | 52.0
Cr
Chromium
24 | 95.9
Mo
Molybdenum
42 | 184
W
Tungsten
74 | | Nd
Neodymium
60 | 238
U
Uranium
92 | | | | | | | | | | | | 50.9 Vanadium 23 | 92.9
Nb
Niobium
41 | Tantalum 73 | | Pr
Prasectynium
59 | Pobadinium 91 | | | | | | | | | | | 47.9
Ti
Titanium
22 | 91.2
Zr
Zirconium
40 | Hafnium 72 | | Cerium
S8 | Thorium 90 | | | | | | | | | | | | · · | Sc
Scandium
21 | 88.9
Y
Yttrium
39 | 139 La La Lanthanum 57 | Actinium 89 | Lanthanoid | ► Actinoid elements | | | | | | | 7 | ž | | 9.01
Be
Beryllium | Mg
Magnesium
12 | Calcium 20 | 87.6
Sr
Strontium
38 | 137
Ba
Barium
56 | (226)
Ra
Radium
88 | ► La | ₹ | | | | | | | - | s Block | 1.01
H
Hydrogen | 6.94
Li
Lithium
3 | Na
Sodium | 39.1
K
Potas sium
19 | 85.5
Rb
Rubidium | 133
Cs
Caesium
55 | (223)
Fr
Frandum
87 | | | | | | | | | | Period | _ | 2 | က | 4 | 2 | 9 | 7 | | | | | | |