| Candidate Name | Centre Number |  |  | Candidate Number |  |  | er |  |  |  |
|----------------|---------------|--|--|------------------|--|--|----|--|--|--|
|                |               |  |  |                  |  |  |    |  |  |  |



A LEVEL CHEMISTRY

**COMPONENT 3** 



**Chemistry in Practice** 

**SPECIMEN PAPER** 

1 hour 15 minutes

| For Examiner's use only |                 |                 |  |  |  |  |
|-------------------------|-----------------|-----------------|--|--|--|--|
| Question                | Maximum<br>Mark | Mark<br>Awarded |  |  |  |  |
| 1.                      | 13              |                 |  |  |  |  |
| 2.                      | 10              |                 |  |  |  |  |
| 3.                      | 10              |                 |  |  |  |  |
| 4.                      | 8               |                 |  |  |  |  |
| 5.                      | 10              |                 |  |  |  |  |
| 6.                      | 9               |                 |  |  |  |  |
| Total                   | 60              |                 |  |  |  |  |

### **ADDITIONAL MATERIALS**

In addition to this examination paper, you will need a data sheet and a calculator.

#### **INSTRUCTIONS TO CANDIDATES**

Use black ink or black ball-point pen. Do not use gel pen. Do not use correction fluid.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer **all** questions in the spaces provided in this booklet.

### **INFORMATION FOR CANDIDATES**

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the need for good English and orderly, clear presentation in your answers.

No certificate will be awarded to a candidate detected in any unfair practice during the examination.

Answer all questions in the spaces provided.

1. (a) Draw and label a diagram of a simple apparatus that could be used in an experiment to determine the enthalpy change of the reaction of zinc with aqueous copper(II) sulfate. The equation for the reaction is given.

$$Zn(s) + CuSO_4(aq) \rightarrow Cu(s) + ZnSO_4(aq)$$
 [3]

(b) The results obtained in such an experiment have been plotted on the graph below.



| (i)  | Determine the maximum temperature <b>change</b> by drawing lines to complete the graph.                                                                                                                                                                         | [3]               |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|      | Maximum temperature change ( $\Delta T$ ) =°C                                                                                                                                                                                                                   |                   |
| (ii) | The experiment used 0.60 g of zinc ( $A_r = 65$ ) and 50 cm <sup>3</sup> of aqueo copper(II) sulfate (an excess). Calculate the enthalpy change for reaction in kJ mol <sup>-1</sup> . Use your value for $\Delta T$ from part (i). You must show your working. | this              |
|      | The specific heat capacity of an aqueous solution is 4.2 J g <sup>-1</sup> °C <sup>-1</sup> . Assume that 1.0 cm <sup>3</sup> of an aqueous solution has a mass of 1.0 g.                                                                                       |                   |
|      |                                                                                                                                                                                                                                                                 |                   |
|      |                                                                                                                                                                                                                                                                 |                   |
|      |                                                                                                                                                                                                                                                                 |                   |
|      |                                                                                                                                                                                                                                                                 |                   |
|      | Enthalpy change of reaction = kJ                                                                                                                                                                                                                                | mol <sup>−1</sup> |
| (i)  | Explain what would be the effect on the reaction of using the same mass of zinc but as large lumps rather than zinc powder in this experiment. You should assume that all other conditions remain t same.                                                       |                   |
|      |                                                                                                                                                                                                                                                                 |                   |
|      |                                                                                                                                                                                                                                                                 |                   |
| (ii) | What effect would using larger lumps have on the graph in (b)?                                                                                                                                                                                                  | [1]               |
|      |                                                                                                                                                                                                                                                                 | <u></u>           |
|      |                                                                                                                                                                                                                                                                 |                   |
|      |                                                                                                                                                                                                                                                                 | 12                |

- 2. A student wanted to determine the concentration of aqueous sulfuric acid by titrating it against a standard solution of sodium carbonate. The student used the following instructions.
  - Dissolve approximately 2.5 g of anhydrous sodium carbonate in distilled water to give 250 cm<sup>3</sup> of solution.
  - Rinse the burette with small volumes of acid and fill to just past the zero mark using a small funnel.
  - Remove the funnel and adjust the acid in the burette so that it is exactly on the 0.00 cm³ mark.
  - Pipette 25.0 cm<sup>3</sup> of the sodium carbonate solution into a conical flask and add an indicator.
  - Add the acid from the burette and, when the indicator shows signs of changing colour, wash the flask walls with water and continue the titration to the end-point.
  - (a) The student carried out a rough titration and three further accurate titrations.Construct a results table which would be suitable to record his burette readings and titres. [2]

| (b) | State why the burette was rinsed with acid before filling and explain the possible effect on the titre if this was not done. |  |  |  |  |  |  |
|-----|------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|     |                                                                                                                              |  |  |  |  |  |  |
|     |                                                                                                                              |  |  |  |  |  |  |
|     |                                                                                                                              |  |  |  |  |  |  |
|     |                                                                                                                              |  |  |  |  |  |  |

|        | udent used 2.52 g of $Na_2CO_3$ to make 250 cm $^3$ of solution. The mea his three concordant results was 20.10 cm $^3$ .                                              | n               |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| The eq | uation for the reaction between sulfuric acid and sodium carbonate is                                                                                                  | is              |
|        | $H_2SO_4(aq) \ + \ Na_2CO_3(aq) \ \rightarrow \ Na_2SO_4\left(aq\right) \ + \ CO_2(g) \ + \ H_2O(I)$                                                                   |                 |
| (i)    | Use this information to calculate the concentration, in mol dm <sup>-3</sup> , of t sulfuric acid. Record this value to the appropriate number of significant figures. | he<br>[3]       |
|        |                                                                                                                                                                        |                 |
|        | Concentration = mol d                                                                                                                                                  | m <sup>-3</sup> |
| (ii)   | Calculate the maximum percentage error in the mean titre value and use this to justify the number of significant figures recorded in part (                            |                 |
|        | Maximum percentage error =                                                                                                                                             | %               |
|        |                                                                                                                                                                        |                 |
|        |                                                                                                                                                                        |                 |
|        |                                                                                                                                                                        |                 |
|        |                                                                                                                                                                        | 10              |

(c)

**3.** A student obtained the following results when measuring the initial rate of decomposition of aqueous hydrogen peroxide, as in the following equation.

$$H_2O_2(aq) \ \rightarrow \ H_2O(I) \ + \ {}^1\!\!{}^{}_2O_2(g)$$

| Concentration of H <sub>2</sub> O <sub>2</sub> (mol dm <sup>-3</sup> ) | 0.100  | 0.200  | 0.300 | 0.400 | 0.500 |
|------------------------------------------------------------------------|--------|--------|-------|-------|-------|
| Rate (mol dm <sup>-3</sup> s <sup>-1</sup> )                           | 0.0511 | 0.0982 | 0.148 | 0.220 | 0.252 |

| (a) | (i)  | Briefly describe a method that could be used to study the rate of decomposition of hydrogen peroxide. | [2]        |
|-----|------|-------------------------------------------------------------------------------------------------------|------------|
|     |      |                                                                                                       |            |
|     |      |                                                                                                       |            |
|     | (ii) | State the main factor that needs to remain constant in order to obt valid results in this experiment. | ain<br>[1] |
|     |      |                                                                                                       |            |
| (b) |      | If the axes on the grid and plot the results from the table above. Draw of best fit.                  | v the      |

[3]

| (c) | The reaction was catalysed by the iodide in potassium iodide. The rate equation for the                                             |                                   |
|-----|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
|     | $rate = k[H_2O_2]^x[I^-]$                                                                                                           |                                   |
|     | Use the graph to deduce the order with recalculate the value of the rate constant, $k$ , answer to the appropriate number of signif | under these conditions. Give your |
|     |                                                                                                                                     |                                   |
|     |                                                                                                                                     |                                   |
|     |                                                                                                                                     |                                   |
|     |                                                                                                                                     |                                   |
|     |                                                                                                                                     | k =                               |
|     |                                                                                                                                     | Units                             |
|     |                                                                                                                                     |                                   |
|     |                                                                                                                                     |                                   |

- **4.** You are given the following five organic compounds in unlabelled bottles.
  - 1-bromobutane
  - butanone
  - 1-chlorobutane
  - pentan-3-one
  - propanal

Plan a method to identify each compound using the fewest possible tests. All tests must be based on chemical reactions and not the physical properties of the compounds or any characteristic odours.

| Your plan must include your tests, observations and conclusions. | [8] |
|------------------------------------------------------------------|-----|
|                                                                  |     |
|                                                                  |     |
|                                                                  |     |
|                                                                  |     |
|                                                                  |     |
|                                                                  |     |
|                                                                  |     |
|                                                                  |     |
|                                                                  |     |
|                                                                  |     |
|                                                                  |     |
|                                                                  |     |
|                                                                  |     |
|                                                                  |     |
|                                                                  |     |

| 5.                                                                                                                                                                                                                                                                                             | (C <sub>6</sub> H <sub>5</sub> )<br>out th<br>period | CH₃) us<br>is oxida<br>I. After                                                                                                                                                                                                                                                                         | (C <sub>6</sub> H <sub>5</sub> COOH) is a solid that<br>ing an alkaline solution of<br>tion reaction the aqueous<br>this oxidation reaction is o<br>m the benzoic acid as an i | potassium man<br>mixture needs to<br>complete, hydroc | ganate(VII). In one of the contract of the con | order to carry<br>a prolonged                                                                                                                                         |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                                                                                                                                                                                                                                                                | (a)                                                  |                                                                                                                                                                                                                                                                                                         | practical technique would ration?                                                                                                                                              | you use in the c                                      | oxidation stage o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | of this                                                                                                                                                               |  |  |  |
|                                                                                                                                                                                                                                                                                                |                                                      |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                       |  |  |  |
|                                                                                                                                                                                                                                                                                                | (b)                                                  | •                                                                                                                                                                                                                                                                                                       | lete the equations to show hould use [O] to represent                                                                                                                          |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | preparation.<br>[2]                                                                                                                                                   |  |  |  |
| $C_6H_5CH_3 + OH^- + \dots \rightarrow C_6H_5COO^- + \dots$ $C_6H_5COO^- + \dots \rightarrow \dots$ (c) The solid benzoic acid can be purified by recrystallisation. The solubility of benzoic acid in three solvents is given in the table.  Solubility of benzoic acid Solvent A Solvent B S |                                                      |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                       |  |  |  |
|                                                                                                                                                                                                                                                                                                | $C_6H_5COO^-$ +                                      |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                       |  |  |  |
|                                                                                                                                                                                                                                                                                                | (c)                                                  |                                                                                                                                                                                                                                                                                                         | •                                                                                                                                                                              | , ,                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | order to carry a prolonged dded to the  of this  [1]  s preparation.  [2]  able.  Solvent C  low low low  ibe how you would f benzoic acid. [6] ed in this question.) |  |  |  |
|                                                                                                                                                                                                                                                                                                |                                                      | So                                                                                                                                                                                                                                                                                                      | lubility of benzoic acid                                                                                                                                                       | Solvent A                                             | Solvent <b>B</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Solvent C                                                                                                                                                             |  |  |  |
|                                                                                                                                                                                                                                                                                                |                                                      |                                                                                                                                                                                                                                                                                                         | in cold solvent                                                                                                                                                                | high                                                  | low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | low                                                                                                                                                                   |  |  |  |
|                                                                                                                                                                                                                                                                                                |                                                      |                                                                                                                                                                                                                                                                                                         | In hot solvent                                                                                                                                                                 | high                                                  | high                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | low                                                                                                                                                                   |  |  |  |
|                                                                                                                                                                                                                                                                                                |                                                      | <ul> <li>(i) Select the appropriate solvent from the table and describe how you would carry out the recrystallisation to obtain a pure sample of benzoic acid.         <ul> <li>[6]</li> </ul> </li> <li>(Your ability to construct an extended response will be assessed in this question.)</li> </ul> |                                                                                                                                                                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                       |  |  |  |
|                                                                                                                                                                                                                                                                                                |                                                      |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                       |  |  |  |
|                                                                                                                                                                                                                                                                                                |                                                      | (ii)                                                                                                                                                                                                                                                                                                    | Describe what you would sample of benzoic acid.                                                                                                                                | d do to assess th                                     | ne purity of your                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                                                                                     |  |  |  |
|                                                                                                                                                                                                                                                                                                |                                                      |                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                |                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ······································                                                                                                                                |  |  |  |

6. (a) The graph below shows the change in pH during a reaction between 0.10 mol dm<sup>-3</sup> sodium hydroxide and 0.10 mol dm<sup>-3</sup> ethanoic acid at room temperature.



| Using the details included in the description and graph, describe the experiment that was carried out in order to plot the graph. [4] |
|---------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                       |
|                                                                                                                                       |
|                                                                                                                                       |
|                                                                                                                                       |
|                                                                                                                                       |
|                                                                                                                                       |
|                                                                                                                                       |
|                                                                                                                                       |
|                                                                                                                                       |

(b) A student wanted to carry out a titration to find the concentration of a sample of aqueous sodium hydroxide. He used a known volume of 0.1 mol dm<sup>-3</sup> ethanoic acid and added the sodium hydroxide. The table shows the pH ranges and the colour changes of some indicators.

| Indicator         | pH range  | Colour in acid | Colour in alkali |
|-------------------|-----------|----------------|------------------|
| thymol blue       | 1.2 - 2.8 | red            | yellow           |
| bromophenol blue  | 3.0 - 4.6 | yellow         | blue             |
| bromocresol green | 4.0 - 5.6 | yellow         | blue             |
| cresol red        | 7.2 - 8.8 | yellow         | red              |

|     | State which indicator the student should choose to obtain an accurate end-point in this titration. Explain your choice.   | [1]              |
|-----|---------------------------------------------------------------------------------------------------------------------------|------------------|
|     |                                                                                                                           | •••••            |
|     |                                                                                                                           |                  |
| (c) | Use data from the graph in part (a) to calculate the acid dissociation cons $K_a$ , of ethanoic acid at room temperature. | tant,<br>[4]     |
|     |                                                                                                                           |                  |
|     |                                                                                                                           |                  |
|     |                                                                                                                           |                  |
|     |                                                                                                                           |                  |
|     | $\mathcal{K}_{a}=$ mol                                                                                                    | dm <sup>-3</sup> |
|     |                                                                                                                           |                  |
|     |                                                                                                                           | 1                |





# **WJEC Eduqas A LEVEL in CHEMISTRY**

# **Data Booklet**

# Infrared absorption values

| Bond                  | Wavenumber (cm <sup>-1</sup> ) |
|-----------------------|--------------------------------|
| C—Br                  | 500 to 600                     |
| C-CI                  | 650 to 800                     |
| c-o                   | 1000 to 1300                   |
| c=c                   | 1620 to 1670                   |
| c=0                   | 1650 to 1750                   |
| C≡N                   | 2100 to 2250                   |
| C-H                   | 2800 to 3100                   |
| O—H (carboxylic acid) | 2500 to 3200 (very broad)      |
| O—H (alcohol/phenol)  | 3200 to 3550 (broad)           |
| N—H                   | 3300 to 3500                   |

## <sup>1</sup>H NMR chemical shifts relative to TMS=0

| Type of proton       | Chemical shift, $\delta$ (ppm) |
|----------------------|--------------------------------|
| $-CH_3$              | 0.1 to 2.0                     |
| OH <sub>3</sub>      | 0.1 to 2.0                     |
| R-CH <sub>3</sub>    | 0.9                            |
| R-CH <sub>2</sub> -R | 1.3                            |
| CH <sub>3</sub> —C≡N | 2.0                            |
| CH₃-CÇO              | 2.0 to 2.5                     |
| −CH₂−CÇO             | 2.0 to 3.0                     |
| CH <sub>3</sub>      | 2.2 to 2.3                     |
| R-CH <sub>2</sub> CI | 3.3 to 4.3                     |
| R—OH                 | 4.5 *                          |
| -C = CH - CO         | 5.8 to 6.5                     |
| CH=C                 | 6.5 to 7.5                     |
| Он—он                | 7.0 *                          |
| R-C H                | 9.8 *                          |
| R-COH                | 11.0 *                         |

<sup>\*</sup>variable figure dependent on concentration and solvent

### <sup>13</sup>C NMR chemical shifts relative to TMS=0

## Type of carbon

### Chemical shift, δ (ppm)

| Key  Manganese  25  An a at a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | up chairman and the complete control of the control of | S8.9 Cobalt 27 103 Rh Rhodium 45 192 Ir Indium 77 Am                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 58.7 Nickel 28 Pd Palladium 46 Pd Pt | S8.7   G3.5   Nickel   20pper   29   29   29   29   29   29   29   2 | 25.1   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0   1.0 | 25.4 Ag Manum 488 Manum 48 | 10.8 12.0 Boron Carbon 5 6 6 C Boron Carbon 5.4 All Sii Con 118 C C Boron 31 32 31 14 All Sii Con 118 C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ## 10.8   12.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0   14.0 | ## 12.0   14.0   16.0    Boron Carbon Nitrogen Oxygen   5.4   5.6    Boron Carbon Nitrogen Oxygen   5.4   5.0    Boron Carbon Nitrogen Oxygen   5.4   5.0    Boron Carbon Nitrogen Oxygen   5.4   5.0    Boron Carbon Nitrogen Oxygen   5.4   5.5    Aluminium Silicon Phosphous Sulfur   14   15   15    Aluminium Silicon Phosphous Sulfur   14   15   15    Aluminium Silicon Phosphous Sulfur   15   119   122   128    Boron Carbon Nitrogen Oxygen   3.2.1   4   5    Boron Carbon Nitrogen Oxygen   3.0   3.2.1   4   5    Boron Carbon Nitrogen   3.2   4   5   | 3 4 5  10.8 12.0 14.0 Nitrogen 5 6  27.0 28.1 31.0 Nitrogen 6 6  27.0 28.1 31.0 Nitrogen 6 6  27.0 28.1 31.0 Nitrogen 7  27.0 28.1 31.0 Nitrogen 6 6  27.0 28.1 31.0 Nitrogen 7  27.0 28.1 31.0 Nitrogen 7  27.0 28.1 31.0 Nitrogen 6 6  27.0 28.1 31.0 Nitrogen 7  27.0 28.1 Nitrogen 7  27.0 Sin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sym Na Sy | Name A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Name A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Name A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Name A A A A A A A A A A A A A A A A A A A                               | Caroup   Rey   Rey   Ar   Ar   Ar   Ar   Ar   Ar   Ar   A            | THE PERIODIC TABLE   Group   February   Fe | Caroup   C   | THE PERIODIC TABLE   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Caroup   C | Caroup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Caroup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Key Key Mn along a span | THE PE  Group  Key  relative atomic number  A Block  A Block  A Block  A Block  Sa.9  Sa.9 | THE PERIOR   Group   February   February | THE PERIODIC T                                                           | Feb                                                                  | Columber   Columber  | Companiest   Com   | Color   Colo | Fe PERIODIC TABLE   Strain   | Figure   Feriod   Figure   F | Froup   Percent   Percen |