

GCE

Chemistry A

H432/03: Unified chemistry

Advanced GCE

Mark Scheme for June 2019

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2019

Annotations available in RM Assessor

Annotation	Meaning
✓	Correct response
×	Incorrect response
^	Omission mark
BOD	Benefit of doubt given
CON	Contradiction
RE	Rounding error
SF	Error in number of significant figures
ECF	Error carried forward
L1	Level 1
L2	Level 2
L3	Level 3
NBOD	Benefit of doubt not given
SEEN	Noted but no credit given
I	Ignore

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
_	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.

You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet **Instructions for Examiners**. If you are examining for the first time, please read carefully **Appendix 5 Introduction to Script Marking: Notes for New Examiners**.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

(Question	Answer	Marks	AO element	Guidance
1	(a)	Polar bonds F (atom) is more electronegative (than C atom) OR F is very/the most electronegative ✓	2	AO1.1 ×2	Mark independently ALLOW C and F have different electronegativities OR the atoms have different electronegativitiesBUT DO NOT ALLOW C is more electronegative
		No overall dipole (CF₄ is) symmetrical OR tetrahedral OR dipoles cancel OR dipoles act in opposite directions ✓			ALLOW C–F shown with correct dipole, i.e. C *+-F* IGNORE square planar IGNORE polar bonds cancel BUT ALLOW polarities cancel IGNORE charges cancel
	(b)	(Molecules) contain • ² H OR deuterium/D • ³ H OR tritium/T OR O/H atoms have more neutrons (than ¹ H) OR (different) O/H isotopes are present	1	AO1.2	ALLOW Molecules contain ¹⁸ O Idea of isotopes is criticalBUT
	(c)	OR (Molecules are) $D_2O \checkmark$ $p(O_2) = 0.21 \times 1.00 \times 10^5$	1	AO2.2	DO NOT ALLOW isotopes of elements different from H and O (e.g. C)
		= 21,000 / 2.1 × 10 ⁴ (Pa) ✓			

Question	Answer	Marks	AO element	Guidance
(d)	FIRST, CHECK ANSWER IF answer = 231 000, award 2 marks $n(C_3H_8)$ $n(C_3H_8) = \frac{42.0 \times 10^3}{24.0}$ OR $\frac{42.0 \times 10^6}{24000}$ OR 1750 (mol) \checkmark Mass of CO ₂ mass CO ₂ = 3 × 1750 × 44 = 231 000 / 2.31 × 10 ⁵ (g) \checkmark	2	AO2.2	ALLOW use of ideal gas equation with a sensible temperature (20–25°C) and pressure (100/101 kPa) At 20°C and 100 kPa, $n(C_3H_8) = \frac{100 \times 10^3 \times 42.0}{8.314 \times 293} = 1724 \text{ (mol)}$
(e)	ALLOW 2 SF, e.g. 230 000 Initial rate = $10^{-2} \times 2.4 \times 10^{-3} \text{ s}^{-1}$ = $2.4 \times 10^{-5} \text{ (mol dm}^{-3} \text{ s}^{-1}) \checkmark$	1	AO2.2	231 \rightarrow 1 mark No conversion of m^3 to dm^3 0.231 \rightarrow 1 mark Confusion of cm^3 and dm^3 77 000 \rightarrow 1 mark No 3 \times for CO ₂
(f)	FIRST, CHECK ANSWER IF answer = 9.03×10^{22} , award 2 marks $n(P_2O_5) = \frac{4.26}{142.0} \text{ OR } 0.03(00) \text{ (mol) } \checkmark$ O atoms = $5 \times 0.0300 \times 6.02 \times 10^{23}$ = $9.03 \times 10^{22} \checkmark$ Minimum 3 SF required	2	AO2.2	Alternative approach $n(O \text{ atoms}) = \frac{4.26}{142.0} \times 5 = 0.15 \checkmark$ O atoms = 0.15 × 6.02 × 10 ²³ = 9.03 × 10 ²² ✓ ALLOW ECF from incorrect $n(P_2O_5)$ ALLOW use of 6.022 × 10 ²³ Common error 1.806 × 10 ²² OR 1.81 × 10 ²² → 1 mark No × 5
	Total	9		

	Question	Answer	Marks	AO element	Guidance
2	(a)	$CO_3^{2-} + H_2O \rightarrow OH^- + HCO_3^-$ OR $CO_3^{2-} + H_2O \rightarrow 2OH^- + CO_2 \checkmark$	1	AO1.2	ALLOW $CO_3^{2-} + 2H_2O \rightarrow 2OH^- + H_2CO_3$ IGNORE state symbols ALLOW inclusion of Na ⁺ as spectator ion, e.g. $2Na^+ + CO_3^{2-} + H_2O \rightarrow 2OH^- + 2Na^+ + CO_2$ IGNORE $Na_2CO_3 + H_2O \rightarrow 2NaOH + CO_2$ Ionic equation required IGNORE equation with H ⁺ or H ₃ O ⁺ e.g. $CO_3^{2-} + H^+ \rightarrow OH^- + CO_2$ Question asks for reaction with H ₂ O
	(b)	Acid/H ⁺ /HCl reacts with OR protonates • benzoate / C ₆ H ₅ COO ⁻ • carboxylate / salt (to form benzoic acid) ✓	1	AO2.3	ALLOW suitable equation, e.g. $C_6H_5COO^- + H^+ \rightarrow C_6H_5COOH$ IGNORE responses purely in terms of neutralisation of alkali, e.g. Acid/H ⁺ /HCl neutralises / reacts with/removes alkali / OH ⁻ / CO_3^{2-} / Na_2CO_3
	(c)	$C_6H_5CH_2OH + 2[O] \rightarrow C_6H_5COOH + H_2O \checkmark$	1	AO2.6	ALLOW molecular, structural, displayed formulae, etc e.g. molecular: $C_7H_8O + 2[O] \rightarrow C_7H_6O_2 + H_2O$

Question	Answer	Marks	AO element	Guidance
Question (d)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 33.8 OR 33.9 (%) award 3 marks Theoretical moles $n(C_6H_5COOH) \text{ OR } n(C_6H_5CH_2OH)$ $= \frac{4.00 \times 1.04}{108.0} \text{ OR } 0.0385 \text{ (mol)} \checkmark$ Actual moles $n(C_6H_5COOH) = \frac{1.59}{122.0} \text{ OR } 0.013(0) \text{ (mol)} \checkmark$ $\% \text{ yield} = \frac{0.0130}{0.0385} \times 100 = 33.8\% \text{ OR } 33.9 \text{ (3 sig fig)} \checkmark$ $Answer depends on some intermediate roundings to 3SF$	Marks 3		Calculator = 0.03851851852 Calculator = 0.01303278689 Alternative method using mass 1. Theoretical moles = 0.0385 mol 2. Mass = 0.0385 × 122.0 = 4.70 g
				3. % yield = $\frac{1.59}{4.70} \times 100 = 33.8\%$ Common errors 35.2% \rightarrow 2 marks From $\frac{4.00}{108} = 0.0370$ (no use of density) 36.5 OR 36.6% \rightarrow 2 marks $\frac{4.00/1.04}{108} = \frac{3.846}{108} = 0.0356$ ($\dot{\div}$ density instead of \times density)

H432/03 Mark Scheme June 2019

Question	Answer	Marks	AO element	Guidance
(e)	Dissolve in the minimum quantity of hot water/solvent ✓ Cool AND Filter AND (leave to) dry ✓ All three needed	2	AO3.3 ×2	ALLOW any solvent DO NOT ALLOW use of drying agent (e.g. MgSO ₄) IGNORE Initial filtering hot filtration to remove insoluble impurities
	Total	8		

	Questi	ion	Answer	Marks	AO element	Guidance
3	(a)	(i)	$4Pb_2O_3 + 3CH_4 \rightarrow 8Pb + 3CO_2 + 6H_2O$ OR $Pb_2O_3 + CH_4 \rightarrow 2Pb + CO + 2H_2O$ OR $2Pb_2O_3 + 3CH_4 \rightarrow 4Pb + 3C + 6H_2O$	1	AO2.6	ALLOW multiples IGNORE state symbols
		(ii)	ONE Safety issue: Compounds may be toxic/poisonous/flammable AND Precaution: Use a fume cupboard/good ventilation	1	AO3.3	IGNORE use safety glasses, lab coat (in question) and tying hair back, safety screen Definite safety issue needed. Not just 'harmful' OR dangerous (Too vague). FOR OTHER SAFETY ISSUES AND PRECAUTIONS, CONTACT TEAM LEADER

Question	Answer	Marks	AO element	Guidance
(iii)	Any 2 modifications from 1. Heat to constant mass (Ensures all lead oxide has reacted) 2. Spread/stir/break up lead oxide OR increase surface area OR use powder rather than lumps (Ensures all lead oxide has reacted) 3. Pass methane/inert gas/N₂ through tube as it cools OR don't pass cold air (Prevents O₂ reacting with Pb) 4. Use excess methane OR more methane (Ensures all lead oxide has reacted) 5. Bubble (escaping) gas through lime water	2	AO3.4 ×2	ALLOW response that implies heating to constant mass, e.g. Heat again until the mass does not change IGNORE 'heat for longer' Needs link to constant mass IGNORE 'weigh straight after heating' IGNORE idea of repeating the experiment/ taking an average/ getting concordant results / larger sample size, etc.
(iv)	(Ensures all lead oxide has reacted OR ensures all CO ₂ has been produced) Pb : O	2	AO2.8	
	Masses(/g): 3.132 AND 0.322 OR Mole ratios: $\frac{3.132}{207.2}$: $\frac{0.322}{16.0}$ OR Mole ratios: 0.0151: 0.020125 \checkmark Empirical formula Pb_3O_4 (must come from masses) \checkmark		×2	NO ECF from incorrect masses

Question	Answer	Marks	AO element	Guidance
(b)	Type of lattice 2 marks • SiO₂: Giant (covalent lattice) ✓ • CO₂: Simple molecular/covalent (lattice) ✓	4	AO1.1 ×2	Throughout, IGNORE 'ionic' for SiO ₂ FOR SiO ₂ , IGNORE macromolecular DO NOT ALLOW giant metallic Mark explanation independently on type of lattice i.e. no ECF from incorrect lattice
	 1. Forces in CO₂ Induced dipole–dipole interactions / London forces ✓ 		AO1.1 ×1	For CO ₂ IGNORE • covalent bonds • van der Waals' forces • idid • LDF DO NOT ALLOW hydrogen bonds OR permanent dipole interactions
	 2. Comparison of forces with strength / melting point (Covalent) bonds in SiO₂ are stronger THAN intermolecular forces in CO₂ OR More energy to break (covalent) bonds in SiO₂ THAN intermolecular forces in CO₂ ✓ ORA 		AO2.1 ×1	For SiO ₂ , comparison needs just 'bonds' OR 'forces' For intermolecular, ALLOW 'between molecules' For comparison, ALLOW strong in SiO ₂ AND weak in CO ₂ DO NOT ALLOW responses containing intermolecular forces in SiO ₂ IGNORE 'More bonds'
	Total	10		

	Que	stion	Answer	Marks	AO element	Guidance
4	(a)	(i)	4-chloro-3,5-dimethylphenol ✓ CARE: Look for dimethyl	1	AO1.2	ALLOW 3,5-dimethyl-4-chlorophenol ALLOW absence of hyphens or extra hyphen or space, e.g. 4 chloro 3,5 dimethylphenol ALLOW full stops or spaces between numbers e.g. 4-chloro-3.5-dimethylphenol ALLOW name based on benzene, if unambiguous e.g.1-chloro-4-hydroxy-2,6-dimethylbenzene DO NOT ALLOW meth OR methy
		(ii)	5 ✓	1	AO2.5	
		(iii)	Functional group Phenol ✓ Test Indicator/pH paper turns red / orange OR pH < 7 OR pH meter < 7 AND No reaction with Na ₂ CO ₃ /CO ₃ ²⁻ /carbonate ✓	2	AO1.2	DO NOT ALLOW alcohol OR hydroxide IGNORE hydroxyl OR hydroxy IGNORE OH (name asked for) ALLOW Add bromine AND white precipitate ALLOW FeCl ₃ AND violet/blue colour

Question	Answer	Marks	AO element	Guidance
(iv)	FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 1.71 × 10 ⁻¹⁰ , award FOUR calculation marks CARE Separate mark for equation	5		
	Equation (1 mark) $C_8H_9CIO \cong H^+ + C_8H_8CIO^- \checkmark$ Molecular formulae required (atoms in any order) [C_8H_9CIO] calculation (2 marks) Molar mass $C_8H_9CIO = 156.5$ (g mol ⁻¹) \checkmark ONLY correct answer $[C_8H_9CIO] = \frac{4.8 \times 10}{156.5} \text{ OR } 0.3067 \text{ (mol dm}^{-3}) \checkmark$ Subsumes mark for molar mass = 156.5 K_a calculation (2 marks) $[H^+] = 10^{-5.14} = 7.244 \times 10^{-6} \text{ (mol dm}^{-3}) \checkmark$ $K_a = \frac{(7.244 \times 10^{-6})^2}{0.3067} = 1.71 \times 10^{-10} \text{ (mol dm}^{-3}) \checkmark$		AO1.2 ×1	ALLOW → for \rightleftharpoons DO NOT ALLOW C_8H_8CIOH in equation i.e. $C_8H_8CIOH \rightleftharpoons H^+ + C_8H_8CIO^-$ If equation is omitted, ALLOW equation mark for a correct K_a expression with molecular formula i.e. $\underbrace{[H^+][C_8H_8CIO^-]}_{[C_8H_9CIO]}$ NO ECF from an incorrect formula in equation ALLOW ECF from incorrect molar mass ALLOW 0.307 up to calculator value: 0.306709265 correctly rounded ALLOW 7.24 × 10 ⁻⁶ up to calculator value: 7.244359601 × 10 ⁻⁶ correctly rounded ALLOW 2 SF (1.7 × 10 ⁻¹⁰) up to calculator value, correctly rounded (but take care from acceptable intermediate rounding)
				COMMON ERRORS 2.36 \times 10 ⁻⁵ 3/4 calculation marks No squaring of 7.24 \times 10 ⁻⁶

Questic	on	Answer	Marks	AO element	Guidance
(b)	(i)	* V	1	AO2.5	DO NOT ALLOW more than one * ALLOW a circle for *
	(ii)	Requirement for E/Z isomerism 2 marks C=C/double bond ✓ Each C (in C=C) is attached to (two) different groups/atoms ✓ Identification as E- or Z- isomer 2 marks E/Z isomerism linked to (high) priority groups ✓ Z- isomer AND groups are on same side OR the ring carbons ✓ Reason why other E/Z isomer does not exist 1 mark ring would be strained OR ring would break/deform OR Cannot form ring if high priority groups are on opposite sides OR ring locks groups on one side of C=C bond ✓	4	AO1.2 ×2 AO2.5 ×2	IGNORE no H attached to C=C IGNORE functional', i.e. ALLOW different functional groups ALLOW in context of groups with largest atomic number ORA Award BOTH identification marks for: Z- isomer AND (high) priority groups on same side Mark independently of previous part Response MUST be linked to the ring/cyclic structure IGNORE just 'E isomer is impossible' IGNORE C=C bond cannot rotate IGNORE Groups can't swap sides

Question	Answer	Marks	AO element	Guidance
(iii)	First group: Reagent AND Functional group: Alkene OR cycloalkene ✓ Examples of reagents Br₂ or other halogen, HBr, H₂ AND Ni (catalyst), H₂O(g)/steam AND H⁺ (catalyst) Organic product for reagent with C=C in α-terpineol ✓ ALLOW product from H₂ or H₂O if H⁺ catalyst has been omitted from reagent. Second group	4	AO3.2 ×4	CONTACT TEAM LEADER FOR OTHER REACTIONS
	Reagent AND Functional group: (Tertiary) alcohol ✓ Examples of reagents NaBr/KBr/Br ⁻ AND acid/H ⁺ (substitution), OR HBr Acid/H ⁺ (catalyst) (elimination),			ALLOW ANY HALIDE, i.e. Cl ⁻ , Br ⁻ , l ⁻ ALLOW H ₂ SO ₄ /H ₃ PO ₄ /acid for H ⁺ ALLOW HBr for H ⁺ and Br ⁻
	CH₃COOH AND acid/H ⁺ (catalyst) (esterification) CH₃COOCOCH₃ (esterification) CH₃COCI (esterification) Organic product for reagent with OH in α-terpineol ✓			 ALLOW name or formula of any carboxylic acid or acyl chloride for esterification ALLOW Na → product with –ONa OR –O⁻
	ALLOW product if catalyst omitted from reagent Tota	I 18		DO NOT ALLOW Cr ₂ O ₇ ²⁻ /H ⁺ (tertiary alcohol)

Questi	on	Answer	Marks	AO element	Guidance
(a)	(ii)	0 marks – No response or no response worthy of credit. Temperature change = $0.2 \times \frac{100}{20}$ = 1(.0)°C ✓	1	AO2.8	IGNORE direction of temperature change Working NOT required
(b)		FIRST CHECK THE ANSWER IN ON ANSWER LINE If answer = (+)156 (J K ⁻¹ mol ⁻¹) award 4 marks	4	AO2.4 ×4	
		Part 1: Calc of Δ_r S Use of 298 K (seen anywhere) • e.g16.1 = -55.8 - 298 × Δ S	_		Using 298 K, $\Delta S = \frac{-55.8 - (-16.1)}{298} = \frac{-39.7}{298}$ $= -0.133(kJ K^{-1}mol^{-1})$ $OR -133 (J K^{-1}mol^{-1})$ $Sign \ required IGNORE \ units$ Calculator: $-0.133221 (kJ K^{-1} mol^{-1})$ $-133.221 (J K^{-1} mol^{-1})$
		 CORRECT use of Gibbs' equation 1 mark using candidate's temperature (e.g. 298) with −16.1 AND −55.8 to calculate △S in kJ OR J 			
		Part 2: Calc of $S(Na_2S_2O_3)$ 1 mark CORRECT use of standard S data in question Seen anywhere (could be within an expression) e.g. • $372.4 - [S(Na_2S_2O_3) + (5 \times 69.9)]$ • OR $372.4 - (5 \times 69.9)$ • OR $372.4 - 349.5$ • OR 22.9			ALLOW ECF from incorrect temperature.
		IGNORE sign, i.e. ALLOW −22.9, etc CORRECT calculation of $S(Na_2S_2O_3)$ using candidate's calculated ΔS in Part 1 to 3 SF 1 mark ✓	_		Using -133: $S(Na_2S_2O_3) = 372.4 - 349.5 - (-133)$ = 22.9 + 133 $= (+)156 (J K^{-1} mol^{-1})$ 3 SF required
					ALLOW ECF from incorrect $\Delta_r S$ (Part 1)

Question	Answer	Marks	AO element	Guidance
(c) (i)	109.5(°) AND tetrahedral ✓	1	AO1.2	ALLOW 109–110(°)
(ii)	O	1	AO3.1	ALLOW cyclic structures. Three 6-ring structures possible, e.g. O 2- O 2
	Total	13		

	Question		Answer	Marks	AO element	Guidance
6	(a)	(i)	A : Fe(OH) ₃ (s) ✓ B : Ag ₂ S(s) ✓	2	AO3.1 ×2	ALLOW Fe(OH) ₃ (H ₂ O) ₃ IGNORE state symbols
		(ii)	Student is incorrect AND No oxidation numbers change OR example, e,g, Fe stays as +2 ✓	1	AO3.2	ALLOW no electron transfer
		(iii)	$2[Fe(H_2O)_6]^{2+} + Cl_2 \rightarrow 2[Fe(H_2O)_6]^{3+} + 2Cl^{-} \checkmark$	1	AO3.1	ALLOW multiples e.g. $[Fe(H_2O)_6]^{2^+} + \frac{1}{2}Cl_2 \rightarrow [Fe(H_2O)_6]^{3^+} + Cl^-$ ALLOW $2[Fe(H_2O)_6]^{2^+} + Cl_2 \rightarrow 2[Fe(H_2O)_5OH]^{2^+} + 2HCl$ OR $2[Fe(H_2O)_6]^{2^+} + Cl_2 \rightarrow 2[Fe(H_2O)_5Cl]^{2^+} + 2H_2O$ NOTE: equation MUST be balanced by charge and oxidation number IGNORE state symbols
		(iv)	$5H_2S + 2MnO_4^- + 6H^+ \rightarrow 2Mn^{2+} + 5S + 8H_2O \checkmark \checkmark$ 1st mark ALL Correct species (SIX) OR Equation containing Mn and S species correctly balanced i.e. $5H_2S + 2MnO_4^- \dots \rightarrow 2Mn^{2+} + 5S \dots$ 2nd mark Complete correct balanced equation	2	AO3.1 ×2	ALLOW multiples, e.g. $2\frac{1}{2} H_2 S + MnO_4^- + 3H^+ \rightarrow Mn^{2+} + 2\frac{1}{2} S + 4H_2O$ ALLOW equation with S^{2-} , e.g. $5S^{2-} + 2MnO_4^- + 16H^+ \rightarrow 2Mn^{2+} + 5S + 8H_2O$ IGNORE extra electrons for 1st mark

Question	Answer	Marks	AO element	Guidance
(b)*	Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5–6 marks) Reaches a comprehensive conclusion to determine the correct formulae of almost all of C, D, E, F, G AND 9H ₂ O There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3–4 marks) Reaches a sound conclusion to determine the correct formulae of at least half of C, D, E, F, G AND 9H ₂ O. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1–2 marks) Reaches a simple conclusion to determine the correct formulae of some of C, D, E, F, G AND 9H ₂ O. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. O marks No response or no response worthy of credit.	6	AO1.2 ×2 AO3.1 ×2 AO3.2 ×2	Indicative scientific points may include: Formula of C, D, E, F and G C: Fe(NO ₃) ₃ •9H ₂ O OR FeN ₃ O ₉ •9H ₂ O D: FeN ₃ O ₉ OR Fe(NO ₃) ₃ E: Fe ₂ O ₃ F: NO ₂ G: O ₂ 9H ₂ O Examples of evidence $n(H_2O) = \frac{0.486}{18.0} = 0.027 \text{ (mol)}$ $0.027: 0.003 = 1: 9 \rightarrow 9H_2O$ $n(F) = \frac{270 - 54}{24000} = \frac{216}{24000} = 0.009(00) \text{ (mol)}$ $M(E) = 55.8 \times 2 + 16.0 \times 3 = 159.6$ $M(F) = \frac{0.414}{0.009(00)} = 46 \text{ (g mol}^{-1})$ G: oxygen linked to relighting glowing split NOTE: Equations could include evidence e.g $Fe(NO_3)_3 \cdot 9H_2O \rightarrow Fe(NO_3)_3 + 9H_2O$ $FeN_3O_9 \cdot 9H_2O \rightarrow FeN_3O_9 + 9H_2O$ $2Fe(NO_3)_3 \rightarrow Fe_2O_3 + 6NO_2 + 11/2O_2$
	Total	12		

OCR (Oxford Cambridge and RSA Examinations) The Triangle Building **Shaftesbury Road** Cambridge **CB2 8EA**

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)

Head office

Telephone: 01223 552552 Facsimile: 01223 552553

