

AQA Qualifications

A-LEVEL Chemistry

CHEM2 Chemistry in Action Mark scheme

2420 June 2015

Version 0.3 – Post Standardisation

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Copyright © 2015 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Question	Marking Guidance	Mark	Comments
1(a)(i)	$2CI^{-} \longrightarrow CI_{2} + 2e^{-}$	1	Ignore state symbols Credit loss of electrons from LHS Credit multiples Do not penalise absence of charge on electron
1(a)(ii)	+7 OR 7 OR VII OR +VII	1	Allow Mn ⁺⁷ and 7+
1(a)(iii)	MnO_4^- + $8H^+$ + $5e^ \longrightarrow$ Mn^{2+} + $4H_2O$	1	Ignore state symbols Credit loss of electrons from RHS Credit multiples Do not penalise absence of charge on electron
1(b)(i)	$Cl_{2} + 2Br^{-} \longrightarrow 2Cl^{-} + Br_{2}$ OR $\frac{1}{2}Cl_{2} + Br^{-} \longrightarrow Cl^{-} + \frac{1}{2}Br_{2}$	1	One of these two equations <u>only</u> Ignore state symbols
1(b)(ii)	(Turns to) <u>yellow / orange / brown</u> (solution)	1	Penalise "red / reddish" as the only colour Accept "red-brown" and "red-orange" Ignore "liquid" Penalise reference to a product that is a gas or

			a precipitate
1(b)(iii)	(Chlorine) gains electron(s) / takes electron(s) / accepts electron(s) (from the bromide ions)	1	Penalise "electron pair acceptor"
	OR (Chlorine) <u>causes another species</u> (Br ⁻) <u>to lose electron(s)</u>		Not simply "causes loss of electrons"
1(c)	M1 $2CI_2 + 2H_2O \longrightarrow 4HCI + O_2$ $(4H^+ + 4CI^-)$	2	Ignore state symbols Credit multiples
	M2 Oxidation state –1		M2 consequential on HCl or Cl ⁻ which must be the only chlorine-containing product in the (un)balanced equation.
			For M2 allow Cl ^{−1} or Cl ^{1−} but not Cl [−]
1(d)	M1 The relative size (of the molecules/atoms)	2	For M1 ignore whether it refers to molecules or atoms.
	Chlorine is <u>smaller</u> than bromine <i>OR</i> has fewer electrons/electron shells <i>OR</i> It is smaller / It has a smaller atomic radius / it is a smaller molecule / atom (or converse)		CE=0 for the clip for reference to (halide) ions or incorrect statements about relative size Ignore molecular mass and M_r
	M2 How size of the intermolecular force affects energy needed		Ignore shielding
	The forces between chlorine / CI_2 molecules are weaker (than the forces between bromine / Br_2 molecules)		QoL in M2 for clear reference to the difference in size <u>of the force between molecules.</u>
	(or converse for bromine)		Reference to Van der Waals forces alone is not
	OR chlorine / Cl ₂ has <u>weaker / fewer/ less (</u> VdW) <u>intermolecular forces /</u> <u>forces between molecules</u>		enough.

(or converse for bromine)	Penalise M2 if (covalent) bonds are broken
---------------------------	---

Question	Marking Guidance	Mark	Comments
2(a)	M1 acidified potassium dichromate or $K_2Cr_2O_7/H_2SO_4$ <i>OR</i> $K_2Cr_2O_7/H^+$ <i>OR</i> acidified $K_2Cr_2O_7$ M2 (orange to) <u>green</u> solution <i>OR</i> goes <u>green</u> M3 (solution) remains <u>orange</u> or no reaction or no (observed) change	3	If no reagent or incorrect reagent in M1, CE= 0 and no marks for M1, M2 or M3 If incomplete / inaccurate attempt at reagent e.g. "dichromate" or "dichromate(IV)" or incorrect formula or no acid, penalise M1 only and mark on For M2 ignore dichromate described as "yellow" or "red" For M3 ignore "nothing (happens)" or "no observation"
	 Alternative using KMnO₄/H₂SO₄ M1 acidified potassium manganate(VII) / potassium permanganate or KMnO₄/H₂SO₄ OR KMnO₄/H⁺ OR acidified KMnO₄ M2 <u>colourless</u> solution OR goes <u>colourless</u> M3 (solution) remains <u>purple</u> or no reaction or no (observed) change 		For M1 If incomplete / inaccurate attempt at reagent e.g. "manganate" or "manganate(IV)" or incorrect formula or no acid, penalise M1 only and mark on Credit alkaline KMnO ₄ for possible full marks but M2 gives <u>brown precipitate</u> or solution goes <u>green</u>

2(b)	M1 (Shake with) Br ₂ OR bromine (water) OR bromine (in CCl ₄ / organic solvent)	3	If no reagent or incorrect reagent in M1 , CE= 0 and no marks for M1 , M2 or M3
	M2 (stays) orange / red / yellow / brown / the sameOR no reaction OR no (observed) change		If incomplete /inaccurate attempt at reagent (e.g. Br), penalise M1 only and mark on
	M3 decolourised / goes colourless / loses its colour / orange to colourless		No credit for combustion observations; CE=0
			For M2 in every case
	OR as alternatives		Ignore "nothing (happens)"
	Use KMnO₄/H₂SO₄		Ignore "no observation"
	M1 acidified potassium manganate(VII) / potassium permanganate OR		Ignore "clear"
	KMnO ₄ /H ₂ SO ₄		For M1 , it must be a whole reagent and/or
	<i>OR</i> KMnO₄/H ⁺ <i>OR</i> acidified KMnO₄		correct formula
	M2 (stays) <u>purple</u> or no reaction or no (observed) change		For M1 penalise incorrect attempt at correct
	M3 decolourised / goes colourless / loses its colour		formula, but mark M2 and M3
	Use iodine		With potassium manganate(VII)
	M1 iodine or I_2 / KI or iodine solution		If incomplete / inaccurate attempt at reagent e.g. "manganate" or "manganate(IV)" or incorrect
	M2 no change		formula or no acid, penalise M1 only and
	M3 decolourised / goes colourless / loses its colour		mark on
	Use concentrated sulfuric acid		Credit alkaline/neutral KMnO ₄ for possible full marks but M3 gives brown precipitate or solution
	M1 <u>concentrated</u> H ₂ SO ₄		goes green
	M2 no change		Apply similar guidance for errors in the formula of iodine or concentrated sulfuric acid reagent

M3 brown	as those used for other reagents.

2(c)	 M1 Any <u>soluble chloride including hydrochloric acid (ignore concentration)</u> M2 <u>white precipitate</u> or <u>white solid / white suspension</u> 	3	If no reagent or incorrect reagent or insoluble chloride in M1 , CE= 0 and no marks for M1 , M2 or M3
	M3 remains colourless or no reaction or no (observed) change or no		Allow chlorine water
	precipitate or clear solution or it remains clear		If incomplete reagent (e.g. chloride ions) or
	OR as an alternative		inaccurate attempt at formula of chosen chloride, or chlorine, penalise M1 only and
	M1 Any <u>soluble iodide including</u> HI		mark on
	M2 yellow precipitate or yellow solid / yellow suspension		For M2 require the word "white" and some
	M3 remains colourless or no reaction or no (observed) change or no precipitate or clear solution or it remains clear		reference to a solid. Ignore "cloudy solution" OR "suspension" (similarly for the alternatives)
	OR as an alternative		For M3
	M1 Any soluble bromide including HBr		Ignore "nothing (happens)"
	M2 cream precipitate or cream solid / cream suspension		Ignore "no observation"
	M3 remains colourless or no reaction or no (observed) change or no precipitate or clear solution or it remains clear		Ignore "clear" <u>on its own</u> Ignore "dissolves"
	OR as an alternative		
	M1 NaOH or KOH or any soluble carbonate		
	M2 brown precipitate or brown solid / brown suspension with NaOH / KOH		
	(white precipitate/ solid/ suspension with carbonate)		
	M3 remains colourless or no reaction or no (observed) change or no precipitate or clear solution or it remains clear		

2(d)	M1 Any <u>soluble</u> <u>sulfate</u> including (dilute or aqueous) sulfuric acid M2 remains colourless or no reaction or no (observed) change or no precipitate or clear solution or it remains clear	3	If no reagent or incorrect reagent or insoluble sulfate in M1 , CE= 0 and no marks for M1 , M2 or M3
	M3 <u>white precipitate</u> or <u>white solid / white suspension</u>		Accept MgSO ₄ and CaSO ₄ but not barium, lead or silver sulfates
			If concentrated sulfuric acid or incomplete reagent (eg sulfate ions) or inaccurate attempt at formula of chosen sulfate, penalise M1 only and mark on
	OR as an alternative M1 NaOH or KOH		For M3 (or M2 in the alternative) require the word "white" and some reference to a solid.
	M2 white precipitate or white solid / white suspension		Ignore "cloudy solution" OR "suspension"
	M3 remains colourless or no reaction or no (observed) change or no		For M2 (or M3 in the alternative)
	precipitate or clear solution or it remains clear		Ignore "nothing (happens)"
			Ignore "no observation"
			Ignore "clear" <u>on its own</u>
			Ignore "dissolves"
			If incomplete reagent (e.g. hydroxide ions) or inaccurate attempt at formula of chosen hydroxide, penalise M1 only and mark on
			If M1 uses NH_3 (dilute or concentrated) penalise M1 only and mark on

Question	Marking Guidance	Mark	Comments
3(a)	M1 Increases / gets bigger	2	If M1 is incorrect CE=0 for the clip
	M2 requires a correct M1		If M1 is blank, mark on and seek to credit the correct information in the text
			M2 requires correct M1
	More shells or sub-shells or (main) levels or sub-levels or orbitals (of electrons)		If "molecules" penalise M2
			Not simply "more electrons"
			Not "more outer shells"
			Ignore reference to nuclear charge and shielding

3(b)(i)

3(b)(ii) Sr + 2H ₂ O \longrightarrow Sr(OH) ₂ + H ₂ 1 Credit multiple Ignore state sy	uations
--	---------

3(c)	Ba(OH) ₂	1	This MUST be a formula so ignore the name
			Credit Ba²⁺ 2OH⁻
			Ignore state symbols

Question	Marking Guidance	Mark	Comments
4(a)(i)	M1	3	If M1 is incorrect CE=0 for the clip
	High (temperature) OR Increase (the temperature)		If M1 is blank, mark on and seek to credit the correct information in the text
	M2		
	The (forward) reaction / to the right is <u>endothermic</u> or <u>takes in / absorbs</u> <u>heat</u>		
	OR		
	The reverse reaction / to the left is <u>exothermic</u> or <u>gives out / releases heat</u>		
	M3 depends on correct M2 and must refer to temperature/heat		M3 depends on a correct statement for M2
	At high temperature, the (position of) equilibrium shifts / moves left to right		For M3 , the position of <u>equilibrium shifts/moves</u>
	to oppose the increase in temperature		to <u>absorb heat</u> OR
			to lower the temperature OR
			to <u>cool down the reaction</u>

4(a)(ii)	M1	2	Mark independently
	The reaction gets to equilibrium faster / in less time		
	OR		
	Produces a small yield <u>faster / in less time</u>		
	OR		
	Increases the rate (of reaction / of attainment of equilibrium)		
	M2		
	High pressure leads to one of the following		Penalise M2 for reference to <u>increased</u> energy
	more particles / molecules in a given volume		of the particles
	particles / they are closer together		
	higher concentration of particles /molecules		
	AND		
	more collisions in a given time / increased collision frequency		

4(a)(iii)	M1 Increase in / more / large(r) / big(ger) surface area / surface sites	2	Mark independently
			For M1 accept "an increase in surface"
	M2 increase in / more successful / productive / effective collisions (in a		For M2 not simply "more collisions"
	given time) (on the surface of the catalyst / with the nickel)		Ignore "the chance or likelihood" of collisions

M1	2	If M1 is incorrect CE=0 for the clip
No effect / None		If M1 is blank, mark on and seek to credit the correct information in the text
M2 requires a correct M1		
Equal / same number / amount of moles / molecules / particles on either side		M2 depends on a correct statement for M1
OR 2 moles / molecules / particles on the left and 2 moles / molecules / particles on the right		In M2 not "atoms"
	No effect / None M2 requires a correct M1 <u>Equal / same number / amount of moles / molecules / particles</u> on either side of the equation OR 2 <u>moles / molecules / particles</u> on the left and 2 <u>moles / molecules / particles</u>	No effect / None M2 requires a correct M1 Equal / same number / amount of moles / molecules / particles on either side of the equation OR 2 moles / molecules / particles on the left and 2 moles / molecules / particles

Question	Marking Guidance	Mark	Comments
5(a)(i)	Initiation	4	
	$Br_2 \longrightarrow 2Br$		Penalise absence of dot once only
	First propagation Br• + CHF ₃ \longrightarrow •CF ₃ + HBr		Credit the dot anywhere on the radical
	Second propagation Br ₂ + •CF ₃ \longrightarrow CBrF ₃ + Br•		
	Termination $2 \cdot CF_3 \longrightarrow C_2F_6 \ OR \ CF_3 CF_3$ OR $2Br \cdot \longrightarrow Br_2$ OR $Br \cdot + \cdot CF_3 \longrightarrow CBrF_3$		

5(a)(ii)	Ultra-violet / uv / sunlight	1	
	OR		
	T > 100°C OR <u>high</u> temperature		

5(b)(i)	F	1	Displayed formula required with the radical dot on carbon
	FC		
	l F		

5(b)(ii)	(The) <u>C—Br</u> (bond) breaks more readily / is weaker than (the) <u>C—CI</u> (bond) (or converse) OR The <u>C—Br bond enthalpy / bond strength</u> is less than that for <u>C—CI</u> (or converse)	1	Requires a comparison between the two bonds Give credit for an answer that suggests that the UV frequency / energy may favour <u>C—Br</u> bond breakage rather than <u>C—CI</u> bond breakage Ignore correct references either to size, polarity or electronegativity Credit correct answers that refer to, for example "the bond between carbon and bromine requires less energy to break than the bond between carbon and chlorine"
----------	--	---	---

5(b)(iii)	M1	3	M1 and M2 could be in either order
	$Br\bullet + O_3 \longrightarrow BrO\bullet + O_2$		Credit the dot anywhere on the radical
			Penalise absence of dot once only
	M2		Penalise the use of multiples once only
	$BrO \bullet + O_3 \longrightarrow Br \bullet + 2O_2$		
	M3 One of the following		
	They / it / the bromine (atom)		
	 does not appear in the overall equation is regenerated is unchanged <u>at the end</u> has <u>not been used up</u> provides an alternative route / mechanism 		

Question	Marking Guidance	Mark	Comments
6(a)(i)	$C_{4}H_{10}$ $M_{r} = 4(12.00000) + 10(1.00794)$ $= 58.07940 \text{ or } 58.0794 \text{ or } 58.079 \text{ or } 58.08$ $and \qquad 58.1$	1	Working is essential, leading to the final value of 58.1 which must be stated in addition to one of the four numbers underlined
6(a)(ii)	<u>By definition</u> <i>OR</i> The <u>standard</u> / <u>reference</u> (value / isotope)	1	Reference to ¹² C alone is not enough
6(b)		1	All bonds and atoms must be drawn Give credit for the displayed formula for the anion
6(c)(i)	H ₂ C=CHCH ₂ OH	1	Any correct representation including correct use

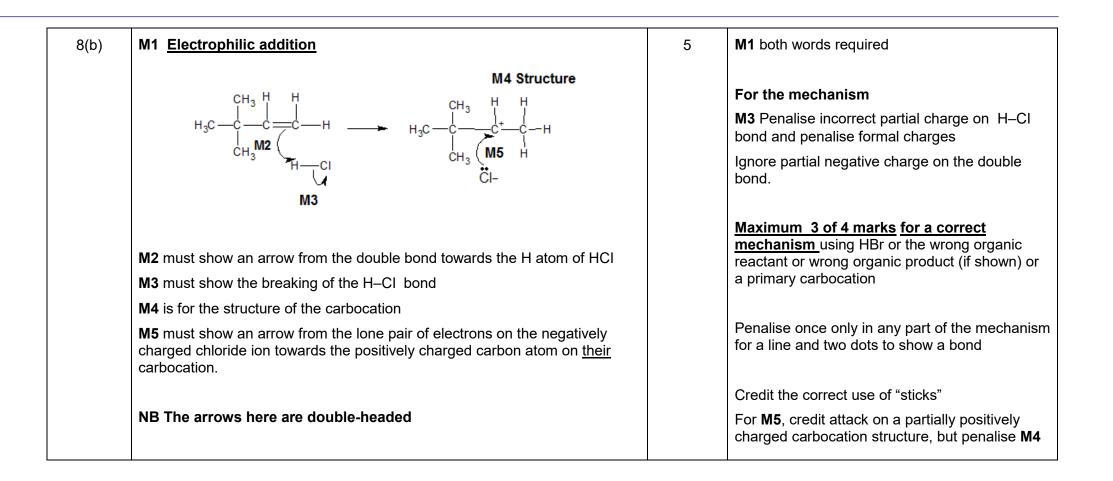
6(c)(i)	H ₂ C=CHCH ₂ OH	1	Any correct representation including correct use of "sticks".
			Require the double bond to be shown

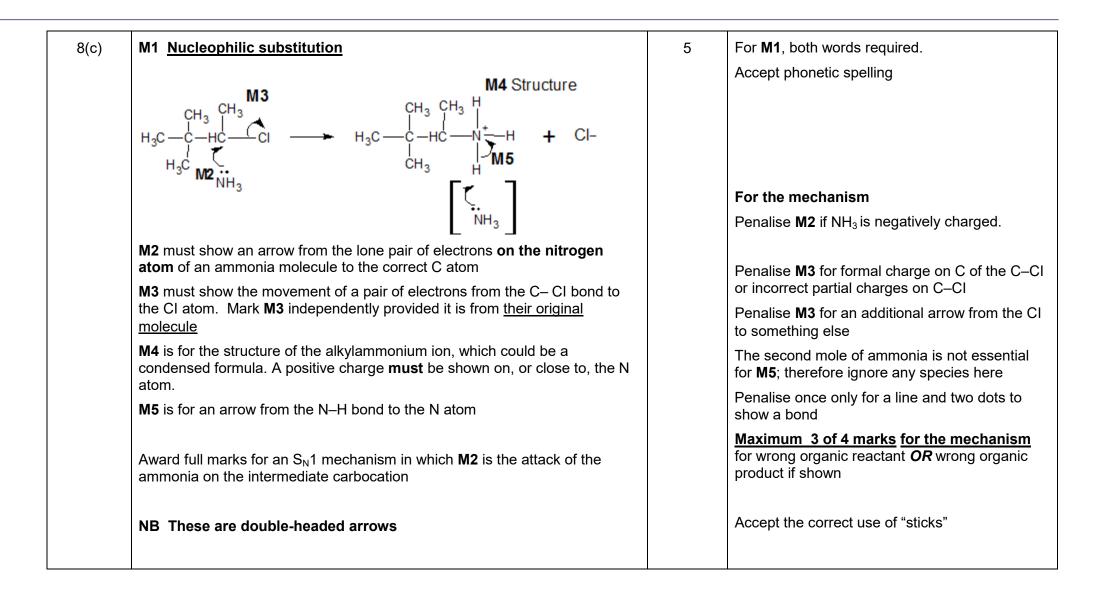
6(c)(ii)	Addition (polymerisation)	1	ONLY this answer
6(c)(iii)	M1 <u>C=C</u> (in range) <u>1620 to 1680</u> (cm ⁻¹)	2	Award one mark for two correct ranges but a failure to draw out the C=C or O—H bonds

M2 <u>O—H</u> (in range) <u>3230 to 3550</u> (cm⁻¹)

6(d)(i)	CH ₃ COCH ₃	1	Any correct representation including correct use of "sticks"
6(d)(ii)	C	1	

Question	Marking Guidance	Mark	Comments
7(a)(i)	$\mathbf{2C}_{6}H_{12}O_{6} \longrightarrow \mathbf{3CH}_{3}COCH_{3} + \mathbf{3CO}_{2} + \mathbf{3H}_{2}O$	1	Or multiples
7(a)(ii)	to speed up the reaction OR (provide a) catalyst or catalyses the reaction or biological catalyst OR <u>release / contain / provides</u> an <u>enzyme</u>	1	Ignore "fermentation" Ignore "to break down the glucose" Not simply "enzyme" on its own
7(b)(i)	$CH_3CH(OH)CH_3 + [O] \longrightarrow CH_3COCH_3 + H_2O$	1	Any <u>correct</u> representation for the two organic structures. Brackets not essential. Not "sticks" for the structures in this case
7(b)(ii)	Secondary (alcohol) OR 2º (alcohol)	1	


7(c)	M1	q=m c ΔT	3	Award full marks for correct answer
	OR	q =150 × 4.18 × 8.0		In M1 , do not penalise incorrect cases in the formula
	M2	= (±) 5016 (J) <i>OR</i> 5.016 (kJ) <i>OR</i> 5.02 (kJ) (also scores M1)		Penalise M3 ONLY if correct numerical answer but sign is incorrect; (+)1114.6 to (+)1120 gains 2 marks
				Penalise M2 for arithmetic error and mark on
	M3	This mark is for dividing correctly the number of kJ by the number of		If $\Delta T = 281$; score q = m c ΔT only
		moles and arriving at a final answer in the range shown. Jsing 0.00450 mol		If c = 4.81 (leads to 5772) penalise M2 ONLY and mark on for M3 = – 1283
		therefore ΔH = <u>– 1115</u> (kJ mol ⁻¹)		
		OR <u>– 1114.6</u> to <u>– 1120</u> (kJ mol ⁻¹)		Ignore incorrect units in M2
		Range (+)1114.6 to (+)1120 gains 2 marks		If units are given in M3 they <u>must be either kJ or</u> $\frac{kJ \text{ mol}^{-1}}{1}$ in this case
	BUT	– 1110 gains 3 marks and +1110 gains 2 marks		
	AND	– 1100 gains 3 marks and +1100 gains 2 marks		


7(d)	M1 The <u>enthalpy change</u> / <u>heat change at constant pressure</u> when <u>1 mol</u> of a compound / substance / element	3	If standard enthalpy of formation CE=0
	M2 is burned / combusts / reacts completely in oxygen		
	OR		
	burned / combusted / reacted in excess oxygen		
			For M3
	M3 with (all) <u>reactants and products / (all) substances in standard / specified</u> <u>states</u>		Ignore reference to 1 atmosphere
	OR		
	(all) <u>reactants and products /</u> (all) <u>substances in normal states under</u> <u>standard conditions</u> / 100 kPa / 1 bar <u>and</u> specified T / 298 K		

7(e)	M1	3	Correct answer gains full marks
	$\Sigma B(reactants) - \Sigma B(products) = \Delta H$		
	OR		Credit 1 mark for (+) 1651 (kJ mol ⁻¹)
	Sum of bonds broken – Sum of bonds formed = ΔH		
	OR 2B(C-C) + B(C=O) + 6B(C-H) + 4B(O=O) (LHS) $- 6B(C=O) - 6B(O-H) (RHS) = \Delta H$ M2 (also scores M1) 2(348)+805+6(412)+4(496) [LHS = 5957] (696) (2472) (1984) $- 6(805) - 6(463) [RHS = (-)7608] = \Delta H$ (4830) (2778)		 For other incorrect or incomplete answers, proceed as follows check for an arithmetic error (AE), which is either a transposition error or an incorrect multiplication / addition error; this would score 2 marks (M1 and M2) If no AE, check for a correct method; this requires either a correct cycle with 4O₂, 3CO₂ and 3H₂O OR a clear statement of M1 which could be in words and scores <u>only M1</u>
	OR using only bonds broken and formed (5152 – 6803) M3 $\Delta H = -1651$ (kJ mol ⁻¹) Candidates may use a cycle and gain full marks.		Allow a maximum of one mark if the <u>only</u> scoring point is LHS = 5957 (or 5152) OR RHS = 7608 (or 6803) Award 1 mark for +1651

For the two marks M1 and M2, <u>any two</u> from	2	
 <u>heat</u> loss or not all <u>heat</u> transferred to the apparatus or <u>heat</u> absorbed by the apparatus or (specific) heat capacity of the apparatus not considered 		Apply the list principle but ignore incomplete reasons that contain correct chemistry
incomplete combustion / not completely burned / reaction is not complete		
• The idea that the water may end up in the gaseous state (rather than		Ignore "evaporation"
liquid)		Ignore "faulty equipment"
 reactants and/or products may not be in standard states. 		Ignore "human error"
 MBE data refers to gaseous species but the enthalpy of combustion refers to liquids in their standard states / liquid propanone and liquid water in standard states 		
 MBE <u>do not refer to specific compounds</u> OR MBE <u>values vary with</u> <u>different compounds / molecules</u> OR are average / mean values taken <u>from a range of compounds / molecules</u> 		Not enough simply to state that "MBE are mean / average values"
	 <u>heat</u> loss or not all <u>heat</u> transferred to the apparatus or <u>heat</u> absorbed by the apparatus or (specific) heat capacity of the apparatus not considered incomplete combustion / not completely burned / reaction is not complete The idea that the water may end up in the gaseous state (rather than liquid) reactants and/or products may not be in standard states. MBE data refers to gaseous species but the enthalpy of combustion refers to liquids in their standard states / liquid propanone and liquid water in standard states MBE <u>do not refer to specific compounds</u> OR MBE <u>values vary with different compounds / molecules</u> OR are average / mean values taken 	 <u>heat</u> loss or not all <u>heat</u> transferred to the apparatus or <u>heat</u> absorbed by the apparatus or (specific) heat capacity of the apparatus not considered incomplete combustion / not completely burned / reaction is not complete The idea that the water may end up in the gaseous state (rather than liquid) reactants and/or products may not be in standard states. MBE data refers to gaseous species but the enthalpy of combustion refers to liquids in their standard states / liquid propanone and liquid water in standard states MBE <u>do not refer to specific compounds</u> OR MBE <u>values vary with different compounds / molecules</u> OR are average / mean values taken

Question		Marking Guidance	Mark	Comments
8(a)	Р	3,3-dimethylbut-1-ene	2	Ignore absence of commas, hyphens and gaps
	OR			Require correct spelling
		accept 3,3-dimethylbutene		
				In Q, "chloro" must come before "dimethyl"
	Q	3-chloro-2,2-dimethylbutane		
	OR			
		accept 2-chloro-3,3-dimethylbutane		

8(d)	M1 (base) elimination	3	M1 Dehydrohalogenation
	M2 KOH OR NaOH		
	M3 Must be consequential on a correct reagent in M2 , but if incomplete or inaccurate attempt at reagent (e.g. hydroxide ion), penalise M2 only and mark on		M3 not "reflux" alone
	Any one from		M3 if a temperature is stated it must be in the range 78°C to 200 °C
	 <u>high</u> temperature OR <u>hot</u> OR <u>heat / boil under reflux</u> <u>concentrated</u> <u>alcohol / ethanol (as a solvent) / (ethanolic conditions)</u> 		Ignore "pressure"

8(e)	M1 3NaBr + $H_3PO_4 \longrightarrow 3HBr + Na_3PO_4$	4	M1 Credit correct ionic species in the equation
	M2 and M3 SO₂ and Br₂ identified M4 Concentrated sulfuric acid • is an oxidising agent • oxidises the <u>bromide (ion) or Br⁻ or NaBr or HBr</u> • is an electron acceptor		 In M2 and M3 the two gases need to be identified. If equations are used using sulfuric acid and the toxic gases are not identified clearly, allow one mark for the formulas of SO₂ and Br₂ apply the list principle as appropriate but ignore any reference to HBr the marks are for identifying the two gases either by name or formula

Question	Marking Guidance	Mark	Comments
9(a)	M1 (could be scored by a correct mathematical expression) M1 $\Delta H = \sum \Delta H_f (\text{products}) - \sum \Delta H_f (\text{reactants})$ <i>OR</i> a <u>correct cycle of balanced equations</u> M2 = 5(-635) - (-1560) = -3175 + 1560 (This also scores M1) M3 = <u>-1615</u> (kJ mol ⁻¹) Award 1 mark ONLY for (+) 1615	5	Correct answer to the calculation gains all of M1 , M2 and M3 Credit 1 mark for(+) 1615 (kJ mol ⁻¹) For other incorrect or incomplete answers, proceed as follows • check for an arithmetic error (AE), which is either a transposition error or an incorrect multiplication; this would score 2 marks (M1 and M2) • If no AE, check for a correct method; this requires either a correct cycle with V ₂ O ₅ and 5CaO OR a clear statement of M1 which could be in words and scores <u>only</u> <u>M1</u>
	 M4 Type of reaction is reduction redox (or accept) V₂O₅ / it / V(V) has been reduced 		In M4 not "vanadium / V is reduced"

9(a) cont.	M5 Major reason for expense of extraction – the answer must be about calcium Calcium is produced / extracted by electrolysis OR calcium is expensive to extract OR calcium extraction uses electricity OR calcium extraction uses large amount of energy OR calcium is a (very) reactive metal / reacts with water or air OR calcium needs to be extracted / does not occur native		QoL Accept calcium is expensive "to produce" but not "to source, to get, to obtain, to buy" etc. In M5 it is neither enough to say that calcium is "expensive" nor that calcium "must be purified"
9(b)	M1 $2AI + Fe_2O_3 \longrightarrow 2Fe + AI_2O_3$ M2 (Change in oxidation state) <u>0 to (+)3</u> <i>OR</i> (changed by) <u>+3</u>	2	Ignore state symbols Credit multiples of the equation In M2 if an explanation is given it must be correct and unambiguous

9(c)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	In M1 credit multiples of the equation
	 M2 and M3 Two hazards in either order <u>HCI / hydrogen chloride / hydrochloric acid is acidic / corrosive / toxic / poisonous</u> Explosion risk with hydrogen (gas) OR <u>H₂ is flammable</u> 		For M2/M3 there must be reference to hydrogen; it is not enough to refer simply to an explosion risk For M2/M3 with HCI hazard, require reference to acid(ic) / corrosive / toxic <u>only</u>
	M4 The only other product / the HCI is easily / readily <u>removed / lost / separated</u> <u>because it is a gas</u> <i>OR</i> <u>will escape</u> (or this idea strongly implied) <u>as a gas</u> <i>OR</i> vanadium / it is the <u>only solid product</u> (and is easily separated) <i>OR</i> vanadium / it is a <u>solid and the other product / HCl is a gas</u>		In M4 it is not enough to state simply that HCI is a gas, since this is in the question.

General principles applied to marking CHEM2 papers by CMI+ (June 2015)

It is important to note that the guidance given here is generic and specific variations may be made at individual standardising meetings in the context of particular questions and papers.

Basic principles

- Examiners should note that throughout the mark scheme, items that are underlined are required information to gain credit.
- Occasionally an answer involves incorrect chemistry and the mark scheme records CE = 0, which means a chemical error has occurred and no credit is given for that section of the clip or for the whole clip.

A. The "List principle" and the use of "ignore" in the mark scheme

If a question requires **one** answer and a candidate gives two answers, no mark is scored if one answer is correct and one answer is incorrect. There is no penalty if both answers are correct.

N.B. Certain answers are designated in the mark scheme as those which the examiner should "Ignore". These answers are not counted as part of the list and should be ignored and will not be penalised.

B. Incorrect case for element symbol

The use of an incorrect case for the symbol of an element should be penalised **once only** within a clip. For example, penalise the use of "h" for hydrogen, "CL" for chlorine or "br" for bromine.

C. Spelling

In general

- The names of chemical compounds and functional groups **must be spelled correctly** to gain credit.
- Phonetic spelling may be acceptable for some chemical terminology.

N.B. Some terms may be required to be spelled correctly or an idea needs to be articulated with clarity, as part of the "Quality of Language" (**QoL**) marking. These will be identified in the mark scheme and marks are awarded only if the QoL criterion is satisfied.

D. Equations

In general

- Equations must be balanced.
- When an equation is worth two marks, one of the marks in the mark scheme will be allocated to one or more of the reactants or products. This is independent of the equation balancing.
- State symbols are generally ignored, unless specifically required in the mark scheme.

E. Reagents

The command word "Identify", allows the candidate to choose to use **either** the name or the formula of a reagent in their answer. In some circumstances, the list principle may apply when both the name and the formula are used. Specific details will be given in mark schemes.

The guiding principle is that a reagent is a chemical which can be taken out of a bottle or container. Failure to identify complete reagents will be penalised, but follow-on marks (e.g. for a subsequent equation or observation) can be scored from an incorrect attempt (possibly an incomplete reagent) at the correct reagent. Specific details will be given in mark schemes.

For example, no credit would be given for

- the cyanide ion or CN⁻ when the reagent should be potassium cyanide or KCN;
- the hydroxide ion or OH⁻ when the reagent should be sodium hydroxide or NaOH;
- the $Ag(NH_3)_2^+$ ion when the reagent should be Tollens' reagent (or ammoniacal silver nitrate). In this example, no credit is given for the ion, but credit could be given for a correct observation following on from the use of the ion. Specific details will be given in mark schemes.

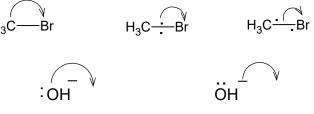
In the event that a candidate provides, for example, both KCN and cyanide ion, it would be usual to ignore the reference to the cyanide ion (because this is not contradictory) and credit the KCN. Specific details will be given in mark schemes.

F. Oxidation states

In general, the sign for an oxidation state will be assumed to be positive unless specifically shown to be negative.

G. Marking calculations, such as those involving enthalpy changes

In general


- The sign for an enthalpy change will be assumed to be positive unless specifically shown to be negative.
- A correct answer alone will score **full marks** unless the necessity to show working is specifically required in the question.
- A correct numerical value with the **wrong sign** will usually score **only one mark**.

All other values gain no credit except


- Two marks can be awarded for correct chemistry with an arithmetic error.
- One mark can be awarded for a correct mathematical statement (or cycle) for the method.

H. Organic reaction mechanisms

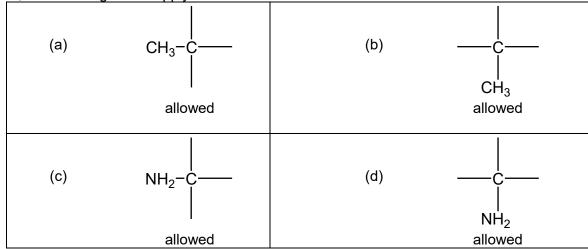
Curly arrows should originate either from a lone pair of electrons or from a bond. **The following representations** should not gain credit **and will be penalised each time** within a clip.

For example, the following would score zero marks

When the curly arrow is showing the formation of a bond to an atom, the arrow can go directly to the relevant atom, alongside the relevant atom or **more than half-way** towards the relevant atom.

In free-radical substitution

• The absence of a radical dot should be penalised **once only** within a clip.


• The use of double-headed arrows or the incorrect use of half-headed arrows in free-radical mechanisms should be penalised **once only** within a clip

In mass spectrometry fragmentation equations, the absence of a radical dot on the molecular ion and on the free-radical fragment would be considered to be two independent errors and both would be penalised if they occurred within the same clip.

I. Organic structures

In general

- Displayed formulae must show all of the bonds and all of the atoms in the molecule, but need not show correct bond angles.
- Bonds should be drawn correctly between the relevant atoms. For example, if candidates show the alcohol functional group as C – HO, they should be penalised **on every occasion**.
- Latitude should be given to the representation of C C bonds in structures, given that CH_3 is considered to be interchangeable with H_3C even though the latter would be preferred.
- Poor presentation of vertical C CH₃ bonds or C NH₂ bonds should **not** be penalised. For the other functional groups, such as OH and CN, the limit of tolerance is the half-way position between the vertical bond and the relevant atoms in the attached group. By way of illustration, the following would apply

- In most cases, the use of "sticks" to represent C H bonds in a structure should **not** be penalised. The exceptions will include structures in mechanisms when the C H bond is essential (e.g. elimination reactions in haloalkanes) and when a displayed formula is required.
- Some examples are given here of structures for specific compounds that should not gain credit

CH₃COH	for	ethanal
CH_3CH_2HO	for	ethanol
$OHCH_2CH_3$	for	ethanol
C_2H_6O	for	ethanol
CH_2CH_2	for	ethene
$CH_2.CH_2$	for	ethene
$CH_2:CH_2$	for	ethene

N.B. Exceptions <u>may</u> be made in the context of balancing equations

• Each of the following should gain credit as alternatives to correct representations of the structures.

$CH_2 = CH_2$	for	ethene, $H_2C=CH_2$
CH ₃ CHOHCH ₃	for	propan-2-ol, CH ₃ CH(OH)CH ₃

J. Organic names

As a general principle, non-IUPAC names or incorrect spelling or incomplete names should **not** gain credit. Some illustrations are given here.

should be butan-2-ol
should be butan-2-ol
should be butan-2-ol
should be butan-2-ol

ethan-1,2-diol	should be ethane-1,2-diol
2-methpropan-2-ol	should be 2-methylpropan-2-ol
2-methylbutan-3-ol	should be 3-methylbutan-2-ol
3-methylpentan 3-mythylpentane 3-methypentane	should be 3-methylpentane should be 3-methylpentane should be 3-methylpentane
propanitrile	should be propanenitrile
aminethane	should be ethylamine (although aminoethane can gain credit)
2-methyl-3-bromobutane 3-bromo-2-methylbutane 3-methyl-2-bromobutane	should be 2-bromo-3-methylbutane should be 2-bromo-3-methylbutane should be 2-bromo-3-methylbutane
2-methylbut-3-ene	should be 3-methylbut-1-ene
difluorodichloromethane	should be dichlorodifluoromethane

K. Additional sheets and blank clips

- Markers should **mark all that is seen** and carry on marking as normal. Clips which refer to the use of additional sheets should **not** be referred to the senior team. Clips which refer to other parts of the script must be referred to the senior team.
- When considering crossed out work, **mark it** as if it were not crossed out **unless** it has been replaced by a later version; this later version then takes priority.
- Mark a blank section with a dash (–) and not with a score of zero.